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ABSTRACT: It is shown that using the results of measurements “clogged” with noise of linear combinations of object 

state variables, their estimates can be obtained by applying a filter consisting of a “model” of the original system and a 

feedback signal proportional to the difference between the actual measurement and its estimate. In this case, the optimal 

control law is found as a result of minimization of the ensemble-averaged quadratic functional of the system quality. A 

system is synthesized that has the property that, in the absence of other disturbances and noise of observations, the 

constant disturbance is always compensated in such a way that the control or tracking error in the steady state is zero, 

which is achieved due to the integrating action of the proportional-integral-differential controller. A method is proposed 

for calculating the control in a tracking system with wave channels, proceeding from the assumption that the full state 

vector is known (reconstructed based on the well-known separation theorem), and also proceeding from the replacement 

of the actual state of the system with the reconstructed one. 

 

KEYWORDS: control actions; tracking system; wave channels; noise and signal environment. 

 

I. INTRODUCTION 

 

As you know, the optimal control of a dynamic system is necessary to know its state [1]. However, in practice, often 

individual variables of the optimal control state either cannot be measured directly, or are measured with a large error. 

Typically, the measurements that can be made are functions of state variables that contain random errors. As a rule, the 

system itself is also susceptible to random disturbances. 

Thus, with the aim of optimal control, it is necessary to estimate the state variables either by a knowingly small or by a 

large number of measurements, which are themselves inaccurate and are functions of state variables. Using the results of 

measurements clogged with noise with linear combinations of variable parameters, an assessment of their state can be 

obtained using a filter consisting of a model of the original system and a feedback signal proportional to the difference 

between the actual value of the measurement result and its estimate [2]. 

 

II. METHODOLOGY 

 

The combination of an optimal filter and an optimal deterministic controller is a feedback controller that is optimal in the 

sense of the ensemble mean for a linear problem with a quadratic functional and additive Gaussian white noise. In this 

case, the principle of stochastic equivalence, or the separability theorem [3], is valid. 

The optimal control law is found as a result of minimizing the quadratic functional averaged over the ensemble: 
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where Е – expectation symbol. 

The expected value of J is a less accurate measure of system quality. Nevertheless, it is a convenient measure that can 

serve as a good compromise solution to the task at hand. 

Under the assumption of ergodicity, the functional from equation (1) will be rewritten as: 

( ) LUUQxxEEJ TT +=
2

1
    (2) 

or 

 LGxGQTJ T+= 2
2

1
,   (3) 

where x is the deviation of the process state from the desired one; T2 is the trace of the matrix, i.e. the sum of the elements 

of the main diagonal; X - stationary covariance matrix of state variables; G is the required optimal feedback matrix; 

GxPxBLU T =−= −1*
.   (4) 

Here: 
*U  – optimal control; P(t) – the coefficients found by integrating the Riccati equations in reverse time: 

BPPBLQPAPAP T 1−
•

+−−−= .    (5) 

The result of minimizing the functional is well known from the literature [4] and includes control: 

- based on the dynamics of the disturbance vector or on the basis of its assessment; 

- with feedback based on state variables or their estimates. 

Note that the solution for the matrix G does not depend on whether the system is considered as random or as deterministic 

with initial conditions determined either by the covariance matrix for a random system or by the values of all state 

variables at the initial time for a deterministic system [5]. 

In general, the given part of the servo system with wave channels is described: 

equation of state ),,,( tVUxfx =
•

;    (6) 

observation equation wtxgy += ),( ,    (7) 

where   )( 321321 nnnxxxx
T

++−=   – dimensional state vector whose components are: (х1-n1) – 

dimensional vector of the state of the controlled part; (х2-n2) – dimensional disturbance vector (environmental conditions); 

(х3-n0) – dimensional vector of the reference signal (uncontrollable part of the system) - the target. 

 

III. SYSTEM ANALYSIS 

 

The rational composition of the state vector is determined taking into account the requirements for a tracking system with 

wave channels and information about the results of observations. So, the elements of the vector х1 there can be angular 

positions, speeds and accelerations of the mechanical, electrical and optical axes of the antenna (equisignal zone - EZ); 

frequency or phase and their derivatives. In this case, the elements of the vector x3 will be the reference values of the 

coordinates and their derivatives corresponding to the vector х1. Behind the vector х3 tracking is in progress. Vector х1 

characterizes the behavior of the external environment - perturbations acting on a given part of the tracking system with 

wave channels. The elements of the vector y are the measured components depending on х1 and х3. Vektor х1 

characterizes the controlled part of the system, and х3 – uncontrollable - the goal [6]. The vector w reflects the 

measurement noise. When measuring a reference signal, these are receiver noise, angular and amplitude target noise, 

signal fading and other radio interference. The control vector U is formed by the controller, which ensures the 

optimization of the given criterion of the quality of the system functioning [7]. 

Vector functions f(·) and g(·) in general, nonlinear, time-varying. The exact form and values of the parameters of the 

above equations depend on the intended purpose of the tracking system with wave channels. 
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A tracking system with wave channels works as follows: the assessor issues an estimate 

T

xxxx






=



321   the actual 

state of a given part of the system х, derived from all interfered-with measurements y up to the time of estimation. This 

estimate is then used in the regulator when calculating the control signal U acting on the controlled part of the system so 

as to minimize the adopted criterion. It is assumed that the equations of the estimator and controller can be obtained 

independently. This assumption can lead to a solution that is not strictly optimal, since servo systems with wave channels 

are nonlinear systems. However, it allows one to obtain a numerically realizable algorithm leading to quite acceptable 

results [8]. 

It is also assumed that it is possible to measure only certain combinations of the state components of a given part of the 

tracking system with wave channels, which, moreover, are clogged with additive noise. Information on х3 is contained 

in a tracking system with wave channels, as a rule, in a narrow-band (generally random) signal. At the output of the 

receiving device we have: 

),,( 3333 twxgy = .   (8) 

To get an estimate 


3x  signal х3 at present, optimal meters (discriminators) with an evaluation device are widely used 

[9]. 

Let the linearized model of the servo system with wave channels be described by the equations: 

CVBUAxX ++=
•

11 ,   (9) 

1111 wxDy += ,  (10) 

where (х1-n) – dimensional state vector; (U-r) – dimensional control vector; (V-s) – dimensional disturbance vector; (y1-

m1) – dimensional vector of measurements associated with х1; (w1-m1) – dimensional vector of measurement noise. 

The disturbing environmental conditions are described using the following equations [9]: 

FnExx +=
•

22 ,   (11) 

2HxV = ,   (12) 

2222 wxDy += ,   (13) 

where (х2-g) – dimensional disturbance vector; n(t) – zero mean white noise vector; (y2-m2) – dimensional vector of 

measurements associated with х2; (w2-m2) – dimensional vector of measurement noise. 

The behavior of the target is simulated in a similar way - the vector х3. In equations (9) - (13), the values A, B, C, D1, 

D2, E, F and H are matrices whose dimensions are determined by the dimensions of the corresponding vectors. Relations 

(11) - (13) are a model of random perturbations of functions other than white noise. The output signal of a stationary 

first-order Gaussian Markov process has an exponential correlation function. This indicates a way to investigate problems 

in which the input noise is random but not white. Using shaping filters of the first or higher order (stationary or non-

stationary) with white noise at the input, we obtain time-correlated or colored noise as output signals, i.e. Gaussian 

Markov process. 

Almost any correlation function of noise for practical purposes can be approximated fairly well by an appropriate choice 

of coefficients in the shaping filter. The state of the entire system in this case will be determined by the extended state 
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x . The extended state vector is also a Gaussian Markov process. 

The state of a system with an extended state space, including both the object (process) itself and the external influence, 

is described in this case using the following equations [10]: 
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Equations (14), (15) can be rewritten as: 

nFUBxAX
~~~

++=
•

,   (16) 

wxDy +=
~

.   (17) 

In this case, the process x and the noise w are assumed to be independent. 

The optimal linear equation with a quadratic functional for such a system has the form: 
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The equations defining the structure and characteristics of the optimal filter can be obtained in various ways. Since their 

derivation is rather cumbersome, we will restrict ourselves only to a discussion of the final results. The structure of an 

optimal least squares filter is described by a vector differential equation: 
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where 



X – appraisal 



x ; K
~

– an appropriately calculated matrix. 

Difference )(


− yy  can be physically interpreted as the difference between the observed and predicted values of y 

obtained by reconstructing the state variables x. By appropriately choosing K, the recovery error )(


− xx  can be made 

zero for arbitrary states of the model of equation (19). Vector initial value )( 0tX


 in equation (19) is usually assumed 

to be zero. In equation (19), the matrix K
~

 is determined from the relation: 

wDtX
K
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where dimension К1-nxm, and К2-gxm, ΔХ and  )()()(  += twtwEw T
 – square covariance matrices of 

state estimation errors and measurement noise, respectively. 

Proportionality matrix K
~

 actually characterizes the relationship between the uncertainty of the state ΔХ and 

measurement uncertainty w [11]. 
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Covariance matrix ΔХ(t) defined as: 
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This assumes that the expectation operator is applied to each element of the matrix. The diagonal elements of the matrix 

are the variances of the vector components. Elements outside the diagonal are mixed elements of the second order. The 

matrix ΔX(t) – symmetrical, consisting of n(n+1)/2 various elements. Thus, the elements of this matrix are the variances 

and mutual variances of filtering errors of the expected components of the vector X(t). Matrix element values ΔX(t) can 

be determined by solving a nonlinear equation like the matrix Riccati equation: 

)(
~~

)(
~~~

)()(
~

)( 1 tXDwDtXFNFAtXtXAtX TTT −++= , 

00 )( XtX = ,   (22) 

where  )()()(  += tntnEN T
. 

Equation (22) characterizes the change in filtering errors over time. The first two terms on the right-hand side of equation 

(22) represent the change in the covariance matrix of reconstruction errors associated with the dynamics of the system. 

The third term is the change in the covariance matrix of reconstruction errors caused by the disturbance V acting on the 

system. And, finally, the last term characterizes the change in the covariance matrix of reconstruction errors as a result 

of the measurements. It depends on the choice of the matrix gain K
~

. 

To solve equation (22), it is necessary to set the initial value ΔХ(t0) error variance matrices. If at the moment t=t0 process 

)( 0tX


 at the filter output is equal to zero, then, as can be seen from equation (21), the matrix ΔХ(t0) is equal to the 

variance matrix of the components of the filtered process Х(t) in the moment t=t0. 

   )()()( 000 tXtXEtX T−−=  [6]. 

 

The structure of a complete system, consisting directly of the controlled process, the external environment, an evaluator 

of states (Kalman-Bucy filter) and optimal feedback, is shown in 

 

http://www.ijarset.com/


   
  

 
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 8, Issue 12 , December 2021 

 

Copyright to IJARSET                                              www.ijarset.com                                                      18714 
 

 

 

 

 

 
Figure: 1. The structure of the complete control system. 

 

Fig. 1. It is shown for the case when the state х2 the external environment is not measured. 

Thus, to determine the control, it is necessary to solve two ordinary differential equations: equation (22) for the matrix 

ΔХ for a given initial condition and the equation 

GXPXBLU T =−= − 1
    (23) 

for the matrix Р under a given final condition. Here, the coefficients P(t) are found by integrating the Riccati equations 

in reverse time [6]: 

BPPBLQPAPAP T 1−+−−−=  .    (24) 

The key to the practical design of the Kalman filter lies in the correct choice of the values of the elements of the covariance 

matrices w and N. Typically, the bandwidth of the filter depends quantitatively on the ratio 
1

 
−

Nw [7]. The larger it 

is, the smaller the filter bandwidth. This ratio determines the trade-off between the state recovery rate and the resistance 

to observation noise. Shifting the observation poles to either half of the complex plane results in an increase in bandwidth 

and hence in recovery speed. 

 

IV. RESULTS 

 

In practice, the matrices N and w are chosen in such a way that the poles of the estimator and controller are at a distance 

of approximately one order of magnitude from the origin. It is uneconomical to have very high speed regulation when 

the recovery process is slow, and vice versa. In particular, when the observation noise is much larger than the excitation 

noise, the observation poles are relatively close to the origin and the reconstruction process is slow. If we now achieve 

the speed of the regulator somewhat higher than that of the observer, then one should expect that the regulator will be 

restrained by the observer. A further increase in the speed of the controller will only increase the average value of the 

square of the input variable without changing the average value of the square of the control error. On the other hand, 

when the observation noise is small, the allowable mean value of the square of the input variable becomes the limiting 
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factor in the system. This limits the speed of the regulator and it becomes impractical to choose an observer with a very 

high speed of response, even if the noise characteristics allow it. 

In conclusion, it should be noted that, in contrast to the optimal controller, the optimal observer can be realized in the 

RMV, since Eq. (22) is a differential equation with given initial conditions, while in the optimal control problem it is 

necessary to solve the Riccati equation under given final conditions in the reverse time [12]. 
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