
      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 
Engineering and Technology 

Vol. 2, Issue 11 , November 2015 
 

Copyright to IJARSET                                                           www.ijarset.com                                                                          970 

 

 

Influence of MHD and wall properties on the 

peristaltic transport of a Williamson fluid through 
porous medium  

 
Dheia G. Salih Al-Khafajy , Ahmed M. Abdulhadi 

 
Department of Mathemat ics, College of Computer Science and Mathematics, University of A l-Qadisiyah, Iraq. 

Department of Mathemat ics, College of Science, University of Baghdad, Baghdad -Iraq. 

 

ABSTRACT: This work concerns the peristaltic flow of a Williamson fluid model through porous medium under 

combined effects of MHD and wall properties . The assumptions of Reynolds number and long wavelength is 

investigated. The flow is investigated in a wave frame of reference moving with velocity of the wave. The 

perturbation series in terms of the Weissenberg number (We <1) was used to obtain explicit forms for velocity field 

and stream function . The effects of thermal conductivity , Grashof number, Darcy number, magnet, rigidity, 

stiffness of the wall and viscous damping force parameters on velocity, temperature and stream function have been 

studied. 
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I. INTRODUCTION 

 

Peristaltic flows have attracted the interest of a number of researchers because of wide applications in physiology 

and industry. Particularly, the occurrence o f such flows are quite prevalent in  bio logical organs; for instance, in 

urine transport from kidney to bladder, in movement of ovum in the fallopian tubes, in passage of food through 

oesophagus and many others. In industrial applications, these flows occur in blood pumps in heart -lung machine, 

in sanitary flu id transport and transport of corrosive flu ids. Since, the p ioneering works of Latham [1] and Shapiro 

et al. [2] a number of analytical, numerical and experimental (Fung and Yih, [3]; Jaffrin, [4]; Brown and Hung, [5];  

Takabatake and Ayukawa, [6]; Takabatake et al., [7];  Ramachandra Rao and Usha, [8];  Subba Reddy et al., [9]) 

studies of peristaltic flows of different fluids have been reported under different conditions with reference to 

physiological and mechanical situations. 

Several researchers considered the fluid  to behave like a Newtonian fluid for physiological peristalsis including the 

flow of blood in arterioles. But such a model cannot be suitable for b lood flow unless the non-Newtonian nature of 

the fluid  is included in it. The non-Newtonian peristaltic flow using a constitutive equation for a second order flu id 

has been investigated by Siddiqui et al. [10] for a p lanar channel and by Sidd iqui and Schwarz [11] for an 

axisymmetric tube. They have performed a perturbation analysis with a wave number, including curvature and 

inertia effects and have determined range of validity of their perturbation solutions. The effects of third o rder flu id 

on peristaltic transport in a p lanar channel were studied by Sidd iqui et al. [12] and the corresponding axisymmetric 

tube results were obtained by Hayat et al. [13]. Haroun [14] studied peristaltic transport of third order fluid in an 

asymmetric channel. Subba Reddy et al. [15] studied the peristaltic  flow of a power-law fluid  in an asymmetric 

channel. Peristaltic  motion of a Williamson fluid  in  an asymmetric channel was studied by Nadeem and Akram 

[16]. 

   Further an interesting fact is that in oesophagus, the movement of food is due to peristalsis. The food moves from      

   mouth to stomach even when upside down. Oesophagus is a long muscular tube commences at the neck opposite the  

   long border of cricoids cartilage and extends from the lower end of the pharynx to the cardiac orifice of the stomach.  

   The swallowing of the food bolus takes place due to the periodic contraction of the esophageal wall. Pressure due to  

   reflexive contraction is exerted on the posterior part of the bolus and the anterior portion experiences relaxat ion so  

   that the bolus moves ahead. The contraction is practically not symmetric, yet it contracts to zero lumen and squeezes  

   it marvelously without letting any part of the food bolus slip back in the opposite direction. This shows the mportance       

   of peristalsis in hu man beings. Mitra and Prasad [17] studied the influence of wall properties on the  Poiseuille flow  
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   under peristalsis. Mathemat ical model for the esophageal swallowing of a food bolus is analyzed by  

   Mishra and Pandey [18]. Kavitha et al. [19] analysed the peristaltic flow of a micropolar fluid in a vertical channel  

   with longwave length approximation. Reddy et al. [20] studied the effect of thickness of the porous material on the  

   peristaltic pumping when the tube wall is provided with non-erodible porous lining. Lakshminarayana et al. [21]  

   studied the peristaltic pumping of a conducting fluid in a channel with a porous peripheral laye r.  

   Radhakrishnamacharya and Srinivasulu [22] studied the influence of wall properties on 

 

peristaltic transport with heat transfer. Rathod et al. [23] studied the influence of wall properties on MHD 

peristaltic transport of dusty fluid. A new model for study the effect of wall properties on peristaltic transport of a 

viscous fluid has been investigated by Mokhtar and Haroun [24], Srinivas et al. [25] studied the effect of slip, wall 

properties and heat transfer on MHD peristaltic transport. Sreenadh et al. [26] studied the effects of wall properties 

and heat transfer on the peristaltic transport of food bolus through oesophagus. Al-Khafajy and Abdulhadi [27] 

analyzed the Effects of MHD and wall properties on the peristaltic transport of a Jeffrey fluid t hrough porous 

medium channel. 

 

     Motivated by this, we consider a mathematical model to study the peristaltic flow of a Williamson fluid under 

the effect of magnetohydrodynamic and wall properties through porous medium. The results are analyzed for 

different values of parameters namely Grashof number, Darcy number, thermal conductivity, magnet, rigidity, 

stiffness and viscous damping forces of the channel wall through porous medium. 

 

II. MATHEMATICAL FORMULATION 

 

Consider the peristaltic flow of an incompressible Williamson  fluid in a flexible channel with flexib le induced by 

sinusoidal wave trains propagating with constant speed c along the channel walls.                                                      

 

                               Y                                                                        H(x,t) is the wall            

                                                                                                                                  c 

                                        a        

                                 0                                                               2                                                                    X  

                                                                                                    Fig.1 Geometry of the problem 

 

The wall deformation is given by 

)(cos),( 2 tcxatxH 



                                                                                                              (1) 

where h , x , t ,  ,   and c represent transverse vibration of the wall, axial coordinate, time, half width of the 

channel, amplitude of the wave, wavelength and wave velocity respectively. 

 

The basic equations governing the non-Newtonian incompressible Williamson fluid are given by:   

The continuity equation is given by:  
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The temperature equation is given by:  
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where u  is the axial velocity, v  transverse velocity, y  transverse coordinate,   fluid density, p  pressure, 0   

 

fluid viscosity,  g  acceleration due to gravity,   coefficient of linear thermal expansion of fluid, 0B  magnetic 

parameter,  T temperature, pc  specific heat at constant pressure, k  is the thermal conductivity and   constant 

heat addition/absorption.  

The constitutive equation for a Williamson fluid model [4], is: 

  ])1)(([ 1

0



                                                                                                          (6) 

Where   is the extra stress tensor, 
  is the infinite shear rate viscosity, 0  is the zero shear rate viscosity,   is 

the time constant and   is defined as  

 
2

1

2

1

i j

jiij                                                                                                                     (7) 

Here   is the second invariant stress tensor. We consider in the constitutive equation (6)  the case for which 

= 0 and   < 1 so we can write  

 )]1(0                                                                                                                                  (8) 

The above model reduces to Newtonian for   = 0. 

The velocity and temperatures at the central line and the wall of the peristaltic channel are given as: 

0TT    at  0y  

1TT    at  hy   

where 0T  is the temperature at centre is line and 1T  is the temperature on the wall of peristaltic channel. 

The governing equation of motion of the flexible wall may be expressed as: 

0

* ppL                                                                                                                                                 (9) 

where 
*L  is an operator, which is used to represent the motion of stretched membrane with viscosity damping 

forces such that 
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where   is the elastic tension in the membrane, 1m  is the mass per unit area, C is the coefficient of viscous 

damping forces. 

Continuity of stress at hy   and using momentum equation, yield 
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In order to simplify the governing equations of the motion, we may introduce the following dimensionless 

transformations as follows: 
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where   is the length of the channel, We Weissenberg number, Da Darcy number, Re Reynolds number, Gr 

Grashof number,   dimensionless temperature, M  magnetic parameter,   dimensionless heat source/sink 

parameter and Pr  Prandtl number.  

Substituting (12) into equations (1)-(11), we obtain the following non-dimensional equations and boundary 

conditions: 

)(cos1),( 2 txtxh                                                                                                                       (13) 
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The corresponding boundary conditions are 
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III. SOLUTION OF THE PROBLEM 

 

The general solution of the governing equations (14)-(18) in the general case seems to be impossible; therefore, we 

shall confine the analysis under the assumption of small dimensionless wave number. It follows that  << 1. In 

other words, we considered the long-wavelength approximation. Along to this assumption, equations (13)-(18) 

become:  

)(cos1),( 2 txtxh                                                                                                                          (21) 
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The corresponding Stream function ( xvyu   , ) with boundary condition 0 at 0y .  

The exact solution of equation (25) with boundary condition given in equation (20) is  
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Equation (24) shows that p dependents on x only. Equation (26) is non-linear and it is difficult to get a closed 

form solution. However for vanishing We, the boundary value problem is agreeable to an easy analytical solution. 

In this case the equation becomes linear and can be solved. Nevertheless, small   suggests the use of perturbation 

technique to solve the non-linear problem. Accordingly, we write 
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Substituting equations (28) into equation (26) with boundary conditions , then equating the like powers of We, we 

obtain 
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The associated boundary conditions are  
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The associated boundary conditions  are  
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C-  Second-order system (
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The associated boundary conditions are  
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Finally, the perturbation solutions up to second term for u and   are given by 
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IV. RES ULTS  AND DIS CUSSION  

 

In this section, the numerical and computational results are discussed for the problem of an incompressible non -

Newtonian the peristaltic flow of a Williamson fluid model through porous medium under combined effects of 

MHD and wall properties  through the graphical illustrations. The numerical evaluations of the analytical results 

and some important results are displayed graphically in Figure 2-16. MATHEMATICA program is used to find out 

numerical results and illustrations. The analytical solutions of the momentum equation and temperature equation 

are obtained by using perturbation technique. All the obtained solutions are discussed graphically under the 

variations of various pertinent parameters in the present section. The trapping bolus phenomenon is also 

incorporated through sketching graphs of streamlines for various physical parameters. 

Based on equation (35), Figures 2-6, illustrates the effects of the parameters 1E , 2E , 3E , We, Gr,  , M, Da and 

  on the velocity. Figure 2, illustrates the effects of the parameters 1E  and 2E  on the velocity distribution 

function u vs. y. It is found that the velocity profile u rising up with the increasing effects of both the parameters 

1E  and 2E , when y < 0.8643, and attains its maximum height at y = 0 , the fluid velocity starts increasing and 

tends to be constant at the peristaltic walls, as specified by the boundary conditions. From figure 3, one can depict 

here that velocity decreases with increasing of 3E , while that velocity profile is rising up with increasing of the 

parameters We, when y < 0.8643. Figure 4, contains the behavior of u under the variation of Gr and  , one can 

depict here that  u  go down with  the increasing effects of both the parameters Gr and  , when y < 0.8643. 

Figure 5, illustrates the effects of the parameters  M and Da on velocity profile. One can depict here that velocity 

decreases with increasing of Da, while that velocity profile is rising up with increasing of M, when y < 0.8643. 

Figure 6, show that velocity distribution decreases with the increasing of  . Also at   = 0.15, u > 0 when y < 

0.8643 and u(0.8643) = 0. At   = 0.175, u > 0 when y < 0.8417 and u(0.8417) = 0. At   = 0.2, u > 0 when y < 

0.8191 and u(0.8191) = 0. And at   = 0.225, u > 0 when y < 0.7965 and u(0.7965) = 0, as specified by the 

boundary conditions.  

 

          

Fig. 2: Velocity profile for different values of 1E  and 2E  with 9.0,7.0,1,15.0,1,1.0,05.0,1.0,0 3  MDaGrEWetx  . 
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Fig. 3: Velocity profile for different values of We and 3E  with 9.0,7.0,1,1,15.0,2.0,3.0,1.0,0 21  MDaGrEEtx   

 

         

Fig. 4: Velocity profile for different values of Gr and  with 9.0,7.0,15.0,1.0,2.0,3.0,05.0,1.0,0 321  MDaEEEWetx   

 

 

      
Fig. 5: Velocity profile for different values of Da and M with 1,1,15.0,1.0,2.0,3.0,05.0,1.0,0 321   GrEEEWetx  
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Fig. 6: Velocity profile for different values of   with 9.0,7.0,1,1,1.0,2.0,3.0,05.0,1.0,0 321  MDaGrEEEWetx   

 

       

Fig. 7: Temperature distribution for different values of    with  15.0,1.0,0  tx . 

 

Based on equation (27), figure 7, shows that effects of the parameter   on the temperature distribution function 

 . The temperature increases with the increase in  , when y < 0.8643, and  (0.8643) = 1 ( at  y = h = 0.8643) 

as specified by the boundary conditions.   

 

V. TRAPPING PHENOMENON 

 

The formation of an internally circulating bolus of fluid by closed streamlines is called trapping and this trapped 

bolus is pushed ahead along with the peristaltic wave. 

Based on equation (36), the effects of 1E , 2E , 3E , Gr,  , Da, M, We and   on trapping can be seen through 

figures 8-16, it is observed that the bolus move near the side walls. Figure 8, show that the size of the trapped bolus 

increase with the increase in 1E . Figure 9, is plotted, the effect of 2E on trapping, the size of the trapped bolus 

increase with the increase in 2E . Figure 10, show that the size of the left trapped bolus increases with increase in 

3E  where as the size of the right trapped bolus  decreases with increase in 3E . The effect of Grashof number Gr 

on trapping is analyzed in figure 11. It can be concluded that the size of the trapped bolus in the left side of the 

channel decreases when Gr increases where as it has opposite behavior in the right hand side of the channel. Figure 

12, show that the size of the left trapped bolus decreases with increase in   where as the size of the right trapped 

bolus increases with increase in  . The influence of Darcy number Da on trapping is analyzed in figure 13. It 

shows that the size of the trapped bolus decreases with increase in Da. Figure 14, show that influence of M on 

trapping. It shows that the size of the trapped bolus increases with increase in M. The influence of Weissenberg 

number We on trapping is analyzed in figure 15. It shows that the size of the trapped bolus increases with increase 

in We. And the effect of   on trapping is analyzed in figure 16. We notice that the size of the trapped bolus 

increases with increase  . 
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Fig. 8: Graph of the streamlines for three different values of 

1E ; (a) 
1E = 0.25, (b) 

1E = 0.3 and 

(c) 
1E = 0.35 at 1,15.0,1,9.0,8.0,1.0,2.0,05.0,1.0 32  GrMDaEEWet . 

 

 
Fig. 9: Graph of the streamlines for three different values of 

2E ; (a) 
2E = 0.15, (b) 

2E = 0.2 

and (c) 
2E = 0.25  at 1,15.0,1,9.0,8.0,1.0,3.0,05.0,1.0 31  GrMDaEEWet . 

 
 

 

 

 

 

 
Fig. 10: Graph of the streamlines for three different values of 

3E ; (a) 
3E = 0.1, (b) 

3E = 0.15 

and (c) 
3E = 0.2  at 1,15.0,1,9.0,8.0,2.0,3.0,05.0,1.0 21  GrMDaEEWet  
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Fig. 11: Graph of the streamlines for three different values of  Gr  ; (a)  Gr = 1, (b) Gr = 2 and  

(c) Gr = 3 at 1,15.0,9.0,8.0,1.0,2.0,3.0,05.0,1.0 321  MDaEEEWet . 

 

 
Fig. 12: Graph of the streamlines for three different values of    ; (a)   = 1,  (b)   = 2 and  

(c)   = 3 at 15.0,1,9.0,8.0,1.0,2.0,3.0,05.0,1.0 321  GrMDaEEEWet . 

 
Fig. 13: Graph of the streamlines for three different values of  Da; (a) Da = 0.8, (b) Da = 0.85 

and (c) Da = 0.9 at 1,15.0,1,9.0,1.0,2.0,3.0,05.0,1.0 321  GrMEEEWet . 
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Fig. 14: Graph of the streamlines for three different values of  M; (a) M = 0.8, (b) M = 0.85 

and (c) M = 0.9 at 1,15.0,1,8.0,1.0,2.0,3.0,05.0,1.0 321  GrDaEEEWet . 

 

 
Fig. 15: Graph of the streamlines for three different values of  We; (a) We = 0, (b) We = 0.025 

and (c) We = 0.05 at 1,15.0,9.0,8.0,1,1.0,2.0,3.0,1.0 321  MDaGrEEEt . 

 

 

Fig. 16: Graph of the streamlines for three different values of   ; (a)  = 0.125, (b)  = 0.15 

and (c)  = 0.175 at 1,1,9.0,8.0,1.0,2.0,3.0,05.0,1.0 321  GrMDaEEEWet . 

 

VI. CONCLUDING REMARKS  

 

The present study deals with the combined effect of MHD and wall properties on the peristaltic transport of a 

Williamson fluid in a two dimensional channel through porous medium. We obtained the analytical solution of the 

problem under long wavelength and low Reynolds number assumptions. The perturbation series in the 

Weissenberg number (We < 1) was used to obtain explicit forms for velocity field and stream function per one 

wavelength. The results are analyzed for different values of pertinent parameters namely Grashof number, Darcy 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 
Engineering and Technology 

Vol. 2, Issue 11 , November 2015 
 

Copyright to IJARSET                                                           www.ijarset.com                                                                          981 

 

 

number, thermal conductivity, rigidity, stiffness, magnet and viscous damping forces of the channel wall through 

porous medium. From wall properties and type of fluid (Williamson), we observed that the bolus move near the 

side walls. The main findings can be summarized as follows : 

1. The axial velocity increases with the increase in 
1E , 

2E , We and M, when y < 0.8643. Further, the axial 

velocity decreases with increase in 3E , Gr,  , Da and  . 

2- The size of the trapped bolus increase with the increase in 
1E , 

2E , M,   and We. While the size of the trapped 

bolus decreases with increase in Da.  

3- The size of the left trapped bolus increases with increase in 3E  where as the size of the right bolus decreases 

with increase in 3E . And the size of the trapped bolus in the left side of the channel decreases when Gr,   

increases where as it has opposite behavior in the right hand side of the channel.  

4. The coefficient of temperature increases with increasing values of thermal conductivity  . 
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