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ABSTRACT: Learning about the various techniques to solve this higher power Diophantine equation in 

successfully deriving their solutions help us understand how numbers work and their significance in different 

areas of mathematics and science. In this paper, First focused to study infinitely many integer solutions of 

following Diophantine Equations. 

2𝑥2 + 𝑦2 = 𝑧2;   3𝑥2 + 𝑦2 = 𝑧2;    4𝑥2 + 𝑦2 = 𝑧2;    5𝑥2 + 𝑦2 = 𝑧2; 6𝑥2 + 𝑦2 = 𝑧2; 

7𝑥2 + 𝑦2 = 𝑧2;   8𝑥2 + 𝑦2 = 𝑧2 ;  9𝑥2 + 𝑦2 = 𝑧2; 10𝑥2 + 𝑦2 = 𝑧2 ;  11𝑥2 + 𝑦2 = 𝑧2; 

12𝑥2 + 𝑦2 = 𝑧2;   13𝑥2 + 𝑦2 = 𝑧2 ;  14𝑥2 + 𝑦2 = 𝑧2; 15𝑥2 + 𝑦2 = 𝑧2 ;  16𝑥2 + 𝑦2 = 𝑧2; 

17𝑥2 + 𝑦2 = 𝑧2;   18𝑥2 + 𝑦2 = 𝑧2 ;  19𝑥2 + 𝑦2 = 𝑧2; 20𝑥2 + 𝑦2 = 𝑧2 ;  21𝑥2 + 𝑦2 = 𝑧2 ; 

Also, 𝑘𝑥2 + 𝑦2 = 𝑧2 having ellipse equation form of   𝑘 (
𝑥

𝑧
)

2

+ (
𝑦

𝑧
)

2

= 1; Also, focused to study Reciprocal form 

of above Diophantine Equation 
𝑘

𝑝2 +
1

𝑞2 =
1

ℎ2. Which is having different sets of integer solutions of  𝑝 = 𝑦𝑧,  𝑞 =

𝑥𝑧 and  ℎ = 𝑥𝑦.Also, focused to obtained infinitely many Integer solutions of following Special Diophantine 

Pythagorean Equations. 

 𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2 + 𝑢2;     𝑝2 + 𝑞2 + 𝑟2 = 𝑠2; 𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2; 

  𝑝4 + 𝑞4 + 2𝑟2 = 𝑠4;    𝑝2 + 𝑞2 + 𝑡2 = 𝑟2 + 𝑠2 + 𝑢2 ;  𝑝6 + 𝑞6 + 3𝑟2 = 𝑠6;  

𝑥3 + 𝑦4 = 𝑧5;  𝑥3 + 𝑦3 = 𝑧2;      𝑥2 + 𝑦3 + 𝑧4 = 𝑤5 ; 𝑥2 + 𝑦3 + 𝑧4 + 𝑤5 = 𝑢2 ; 

KEYWORDS: Diophantine Equations, Pythagorean theorem, Reciprocal Pythagorean theorem, Ellipse, 

Reciprocal ellipse equations. 

Mathematics Subject Classifications:11D72,11D61, 

I. INTRODUCTION 

The fascinating branch of Mathematics is the Theory of Numbers in which the subject of Diophantine equations 

requiring only the integer solutions is an interesting area to various mathematicians. In other words, the theory of 

Diophantine equations is an ancient subject that typically involves solving, polynomial equation in two or more 

variables or a system of polynomial equations with the number of unknowns greater than the number of equations, 

in integers and occupies a pivotal role in the region of mathematics.  

II.METHODS 

Now we are focused to study to obtain integer solutions of special Diophantine equation  𝑘𝑥2 + 𝑦2 = 𝑧2 and 

Reciprocal curve equation  
𝒌

𝒙𝟐 +
𝟏

𝒚𝟐 =
𝟏

𝒛𝟐 with using of trial-and-error method. In particularly, focused to obtain 

integer solutions of above Diophantine equations with k values are varies from 2 to 21. 
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III.RESULTS: 

 In this paper, First focused to study integer solutions of following Diophantine Equations. 

2𝑥2 + 𝑦2 = 𝑧2;   3𝑥2 + 𝑦2 = 𝑧2;    4𝑥2 + 𝑦2 = 𝑧2;    5𝑥2 + 𝑦2 = 𝑧2; 6𝑥2 + 𝑦2 = 𝑧2; 

7𝑥2 + 𝑦2 = 𝑧2;   8𝑥2 + 𝑦2 = 𝑧2 ;  9𝑥2 + 𝑦2 = 𝑧2; 10𝑥2 + 𝑦2 = 𝑧2 ;  11𝑥2 + 𝑦2 = 𝑧2; 

12𝑥2 + 𝑦2 = 𝑧2;   13𝑥2 + 𝑦2 = 𝑧2 ;  14𝑥2 + 𝑦2 = 𝑧2; 15𝑥2 + 𝑦2 = 𝑧2 ;  16𝑥2 + 𝑦2 = 𝑧2; 

17𝑥2 + 𝑦2 = 𝑧2;   18𝑥2 + 𝑦2 = 𝑧2 ;  19𝑥2 + 𝑦2 = 𝑧2; 20𝑥2 + 𝑦2 = 𝑧2 ;  21𝑥2 + 𝑦2 = 𝑧2 ; 

 

Case 1: Consider Diophantine equation  2𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 2𝑛+1,  

𝑦 = 2𝑛 and  𝑧 = 3(2)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 2𝑛+1,  𝑦 = 2𝑛 and  𝑧 = 3(2)𝑛 are satisfies the integer solution of Diophantine equation 2𝑥2 +

𝑦2 = 𝑧2.  

Since 2(2𝑛+1)2 + (2𝑛)2 = (22𝑛+3) + (22𝑛) = (22𝑛)(23 + 1) = (3(2)𝑛)2. 

Lemma 1.1: It is having Ellipse equation form of 2 (
𝑥

𝑧
)

2

+ (
𝑦

𝑧
)

2

= 1; Which is having simple form of ellipse  

2𝑝2 + 𝑞2 = 1, whose solution is  𝑝 =
2

3
, 𝑞 =

1

3
. 

Lemma 1.2: Reciprocal form of above Diophantine Equation 
2

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 3(22𝑛),  𝑞 = 𝑥𝑧 = 3(22𝑛+1) and  ℎ = 𝑥𝑦 = 22𝑛+1. 

Since 
2

(3(22𝑛))
2 +

1

(3(22𝑛+1))
2 =

1

(22𝑛+1)2
; 

Case 2: Consider Diophantine equation  3𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 3𝑛,  𝑦 =

3𝑛 and  𝑧 = 2(3)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 3𝑛,  𝑦 = 3𝑛 and  𝑧 = 2(3)𝑛 are satisfies the integer solution of Diophantine equation 3𝑥2 + 𝑦2 =

𝑧2. 

Since 3(3𝑛)2 + (3𝑛)2 = (32𝑛+1) + (32𝑛) = (32𝑛)(3 + 1) = (2(3)𝑛)2. 

Lemma 2.1: It is having Ellipse equation form of 3 (
𝑥

𝑧
)

2

+ (
𝑦

𝑧
)

2

= 1; Which is having simple form of ellipse  

3𝑝2 + 𝑞2 = 1, whose solution is  𝑝 = 𝑞 =
1

2
. 

Lemma 2: Reciprocal form of above Diophantine Equation 
3

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 2(32𝑛),  𝑞 = 𝑥𝑧 = 2(32𝑛) and  ℎ = 𝑥𝑦 = 32𝑛. 

Since 
3

(2(32𝑛))
2 +

1

(2(32𝑛))
2 =

1

(32𝑛)2
; 

Case 3: Consider Diophantine equation  4𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is (2x, y, z) is a 

Pythagorean triplet. It is having different sets of Integer solutions for each odd integer x, then 𝑦 = 𝑥2 − 1 and 

𝑧 = 𝑥2 + 1. 

Proof: Let = 𝑥2 − 1 and 𝑧 = 𝑥2 + 1. 
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Consider 𝑧2 − 𝑦2 = (𝑥2 + 1)2 − (𝑥2 − 1)2 = 4𝑥2 = (2𝑥)2. 

Hence if x is an odd, then (2x, y, z) is a Pythagorean triplet. 

Case 4: Consider Diophantine equation  5𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 4𝑛+1,  

𝑦 = 4𝑛 and  𝑧 = 3(4)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 4𝑛+1,  𝑦 = 4𝑛 and  𝑧 = 3(4)𝑛 are satisfies the integer solution of Diophantine equation 5𝑥2 +

𝑦2 = 𝑧2.  

Since 5(4𝑛+1)2 + (4𝑛)2 = (3(4)𝑛)2. 

Lemma 4.1: Reciprocal form of above Diophantine Equation 
5

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 3(42𝑛),  𝑞 = 𝑥𝑧 = 3(42𝑛+1) and  ℎ = 𝑥𝑦 = 42𝑛+1. 

Since 
5

(3(42𝑛))
2 +

1

(3(42𝑛+1))
2 =

1

(42𝑛+1)2
. 

Case 5: Consider Diophantine equation  6𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 2𝑛+1,  

𝑦 = 2𝑛 and  𝑧 = 5(2)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 2𝑛+1,  𝑦 = 2𝑛 and  𝑧 = 5(2)𝑛 are satisfies the integer solution of Diophantine equation 6𝑥2 +

𝑦2 = 𝑧2.  

Since 6(2𝑛+1)2 + (2𝑛)2 = (5(2)𝑛)2. 

Lemma 5.1: Reciprocal form of above Diophantine Equation 
6

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 5(22𝑛),  𝑞 = 𝑥𝑧 = 5(22𝑛+1) and  ℎ = 𝑥𝑦 = 22𝑛+1. 

Since 
6

(5(22𝑛))
2 +

1

(5(22𝑛+1))
2 =

1

(22𝑛+1)2
 

Case 6: Consider Diophantine equation  7𝑥2 + 𝑦2 = 𝑧2 having the different sets of integer solutions is 𝑥 = 3𝑛,  

𝑦 = 3𝑛+1 and  𝑧 = 4(3)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 3𝑛,  𝑦 = 3𝑛+1 and  𝑧 = 4(3)𝑛 are satisfies the integer solution of Diophantine equation 7𝑥2 +

𝑦2 = 𝑧2.  

Since 7(3𝑛)2 + (3𝑛+1)2 = (4(3)𝑛)2. 

Lemma 6.1: Reciprocal form of above Diophantine Equation 
7

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 4(32𝑛+1),  𝑞 = 𝑥𝑧 = 4(32𝑛) and  ℎ = 𝑥𝑦 = 32𝑛+1. 

Since 
7

(4(32𝑛+1))
2 +

1

(4(32𝑛))
2 =

1

(32𝑛+1)2
 

Case 7: Consider Diophantine equation  8𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 2𝑛,  𝑦 =

2𝑛 and  𝑧 = 3(2)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 3𝑛+1,  𝑦 = 3𝑛+1 and  𝑧 = 3𝑛+2 are satisfies the integer solution of Diophantine equation 8𝑥2 +

𝑦2 = 𝑧2.  

Since 8(3𝑛+1)2 + (3𝑛+1)2 = (3𝑛+2)2. 
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Lemma 7.1: Reciprocal form of above Diophantine Equation 

8

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 32𝑛+3,  𝑞 = 𝑥𝑧 = 32𝑛+3 and  ℎ = 𝑥𝑦 = 32𝑛+2. 

Since 
8

(32𝑛+3)2
+

1

(32𝑛+3)2
=

1

(32𝑛+2)2
 

Case 8: Consider Diophantine equation  9𝑥2 + 𝑦2 = 𝑧2 having the two different sets of integer solutions.  

If x is odd then 𝑦 =
9𝑥2−1

2
 , 𝑧 =

9𝑥2+1

2
. If x is even then 𝑦 = 9 (

𝑥

2
)

2

− 1, 𝑧 = 9 (
𝑥

2
)

2

+ 1. 

Proof: if x is an odd integer. Let 𝑦 =
9𝑥2−1

2
 , 𝑧 =

9𝑥2+1

2
. 

Consider 𝑧2 − 𝑦2 = (
9𝑥2+1

2
)

2

− (
9𝑥2−1

2
)

2

= 9𝑥2 = (3𝑥)2. Hence (3x, y, z) is a Pythagorean triplet. 

if x is an even integer. Let = 9(
𝑥

2
)

2

− 1, 𝑧 = 9 (
𝑥

2
)

2

+ 1. 

Consider 𝑧2 − 𝑦2 = (9 (
𝑥

2
)

2

+ 1)
2

− (9 (
𝑥

2
)

2

− 1)
2

= 9𝑥2 = (3𝑥)2. Hence (3x, y, z) is a Pythagorean triplet. 

Case 9: Consider Diophantine equation  10𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 6𝑛+1,  

𝑦 = 6𝑛 and  𝑧 = 19(6)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 6𝑛+1,  𝑦 = 6𝑛 and  𝑧 = 19(6)𝑛 are satisfies the integer solution of Diophantine equation 10𝑥2 +

𝑦2 = 𝑧2.  

Since 10(6𝑛+1)2 + (6𝑛)2 = (19(6)𝑛)2. 

Lemma 9.1: Reciprocal form of above Diophantine Equation 
10

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 19(62𝑛),  𝑞 = 𝑥𝑧 = 19(62𝑛+1) and  ℎ = 𝑥𝑦 = 62𝑛+1. 

Since 
10

(19(62𝑛))
2 +

1

(19(62𝑛+1))
2 =

1

(62𝑛+1)2
 

Case 10: Consider Diophantine equation  11𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 3𝑛+1,  

𝑦 = 3𝑛 and  𝑧 = 10(3)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 3𝑛+1,  𝑦 = 3𝑛 and  𝑧 = 10(3)𝑛 are satisfies the integer solution of Diophantine equation 11𝑥2 +

𝑦2 = 𝑧2.  

Since 11(3𝑛+1)2 + (3𝑛)2 = (10(3)𝑛)2. 

Lemma 10.1: Reciprocal form of above Diophantine Equation 
11

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 10(32𝑛),  𝑞 = 𝑥𝑧 = 10(32𝑛+1) and  ℎ = 𝑥𝑦 = 32𝑛+1. 

Since 
11

(10(32𝑛))
2 +

1

(10(32𝑛+1))
2 =

1

(32𝑛+1)2
 

Case 11: Consider Diophantine equation  12𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 2𝑛+1,  

𝑦 = 2𝑛 and  𝑧 = 7(2)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 2𝑛+1,  𝑦 = 2𝑛 and  𝑧 = 7(2)𝑛 are satisfies the integer solution of Diophantine equation 12𝑥2 +

𝑦2 = 𝑧2.  
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Since 12(2𝑛+1)2 + (2𝑛)2 = (7(2)𝑛)2. 

Lemma 11.1: Reciprocal form of above Diophantine Equation 
12

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 7(22𝑛),  𝑞 = 𝑥𝑧 = 7(22𝑛+1) and  ℎ = 𝑥𝑦 = 22𝑛+1. 

Since 
12

(7(22𝑛))
2 +

1

(7(22𝑛+1))
2 =

1

(22𝑛+1)2
 

Case 12: Consider Diophantine equation  13𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 6𝑛,  

𝑦 = 6𝑛+1 and  𝑧 = 7(6)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 6𝑛,  𝑦 = 6𝑛+1 and  𝑧 = 7(6)𝑛 are satisfies the integer solution of Diophantine equation 13𝑥2 +

𝑦2 = 𝑧2.  

Since 13(6𝑛)2 + (6𝑛+1)2 = (7(6)𝑛)2. 

Lemma 12.1: Reciprocal form of above Diophantine Equation 
13

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 7(62𝑛+1),  𝑞 = 𝑥𝑧 = 7(62𝑛) and  ℎ = 𝑥𝑦 = 62𝑛+1. 

Since 
13

(7(62𝑛+1))
2 +

1

(7(62𝑛))
2 =

1

(62𝑛+1)2
 

Case 13: Consider Diophantine equation  14𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 6𝑛+1,  

𝑦 = 5(6)𝑛 and  𝑧 = 23(6)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 6𝑛+1,  𝑦 = 5(6)𝑛 and  𝑧 = 23(6)𝑛 are satisfies the integer solution of Diophantine equation 

14𝑥2 + 𝑦2 = 𝑧2.  

Since 14(6𝑛+1)2 + (5(6)𝑛)2 = (23(6)𝑛)2. 

Lemma 13.1: Reciprocal form of above Diophantine Equation 
14

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 115(62𝑛),  𝑞 = 𝑥𝑧 = 23(62𝑛+1) and  ℎ = 𝑥𝑦 = 5(6)2𝑛+1. 

Since 
14

(115(62𝑛))
2 +

1

(23(62𝑛+1))
2 =

1

(5(6)2𝑛+1)2
 

Case 14: Consider Diophantine equation  15𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 3𝑛+1,  

𝑦 = 3𝑛+1 and  𝑧 = 12(3)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 3𝑛+1,  𝑦 = 3𝑛+1 and  𝑧 = 12(3)𝑛 are satisfies the integer solution of Diophantine equation 

15𝑥2 + 𝑦2 = 𝑧2.  

Since 15(3𝑛+1)2 + (3𝑛+1)2 = (12(3)𝑛)2. 

Lemma 14.1: Reciprocal form of above Diophantine Equation 
15

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 12(32𝑛+1),  𝑞 = 𝑥𝑧 = 12(32𝑛+1) and  ℎ = 𝑥𝑦 = (3)2𝑛+2. 

Since 
15

(12(32𝑛+1))
2 +

1

(12(32𝑛+1))
2 =

1

((3)2𝑛+2)2
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Case 15: Consider Diophantine equation  16𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions. If x is even 

then 𝑦 = 16 (
𝑥

2
)

2

− 1, 𝑧 = 16 (
𝑥

2
)

2

+ 1. 

Proof: if x is an even integer. Let 𝑦 = 16 (
𝑥

2
)

2

− 1, 𝑧 = 16 (
𝑥

2
)

2

+ 1. 

Consider 𝑧2 − 𝑦2 = (16 (
𝑥

2
)

2

+ 1)
2

− (16 (
𝑥

2
)

2

− 1)
2

= 16𝑥2 = (4𝑥)2. Hence (4x, y, z) is a Pythagorean 

triplet. 

Case 16: Consider Diophantine equation  17𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 3𝑛+1,  

𝑦 = 4(3)𝑛 and  𝑧 = 13(3)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 3𝑛+1,  𝑦 = 4(3)𝑛 and  𝑧 = 13(3)𝑛 are satisfies the integer solution of Diophantine equation 

17𝑥2 + 𝑦2 = 𝑧2.  

Since 17(3𝑛+1)2 + (4(3)𝑛)2 = (13(3)𝑛)2. 

Lemma 16.1: Reciprocal form of above Diophantine Equation 
17

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 52(32𝑛),  𝑞 = 𝑥𝑧 = 13(32𝑛+1) and  ℎ = 𝑥𝑦 = 4(3)2𝑛+1. 

Since 
17

(52(32𝑛))
2 +

1

(13(32𝑛+1))
2 =

1

(4(3)2𝑛+1)2
 

Case 17: Consider Diophantine equation  18𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 2𝑛+1,  

𝑦 = 3(2)𝑛 and  𝑧 = 9(2)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 2𝑛+1,  𝑦 = 3(2)𝑛 and  𝑧 = 9(2)𝑛 are satisfies the integer solution of Diophantine equation 18𝑥2 +

𝑦2 = 𝑧2.  

Since 18(2𝑛+1)2 + (3(2)𝑛)2 = (9(2)𝑛)2. 

Lemma 17.1: Reciprocal form of above Diophantine Equation 
18

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 27(22𝑛),  𝑞 = 𝑥𝑧 = 9(22𝑛+1) and  ℎ = 𝑥𝑦 = 3(2)2𝑛+1. 

Since 
18

(27(22𝑛))
2 +

1

(9(22𝑛+1))
2 =

1

(3(2)2𝑛+1)2
 

Case 18: Consider Diophantine equation  19𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 3𝑛+1,  

𝑦 = 5(3)𝑛 and  𝑧 = 14(3)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 3𝑛+1,  𝑦 = 5(3)𝑛 and  𝑧 = 14(3)𝑛 are satisfies the integer solution of Diophantine equation 

19𝑥2 + 𝑦2 = 𝑧2.  

Since 19(3𝑛+1)2 + (5(3)𝑛)2 = (14(3)𝑛)2. 

Lemma 18.1: Reciprocal form of above Diophantine Equation 
19

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 70(32𝑛),  𝑞 = 𝑥𝑧 = 14(32𝑛+1) and  ℎ = 𝑥𝑦 = 5(3)2𝑛+1. 

Since 
19

(70(32𝑛))
2 +

1

(14(32𝑛+1))
2 =

1

(5(3)2𝑛+1)2
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Case 19: Consider Diophantine equation  20𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions is 𝑥 = 2𝑛+1,  

𝑦 = 2𝑛 and  𝑧 = 9(2)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 2𝑛+1,  𝑦 = 2𝑛 and  𝑧 = 9(2)𝑛 are satisfies the integer solution of Diophantine equation 20𝑥2 +

𝑦2 = 𝑧2. Since 20(2𝑛+1)2 + ((2)𝑛)2 = (9(2)𝑛)2. 

Lemma 19.1: Reciprocal form of above Diophantine Equation 
20

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 9(22𝑛),  𝑞 = 𝑥𝑧 = 9(22𝑛+1) and  ℎ = 𝑥𝑦 = (2)2𝑛+1. 

Since 
20

(9(22𝑛))
2 +

1

(9(22𝑛+1))
2 =

1

((2)2𝑛+1)2
 

Case 20: Consider Pythagorean equation  21𝑥2 + 𝑦2 = 𝑧2 having different sets of integer solutions (in terms of 

exponential) is 𝑥 = 2𝑛,  𝑦 = 2𝑛+1 and  

 𝑧 = 5(3)𝑛. Here n is positive integer. 

Proof: Let 𝑥 = 2𝑛,  𝑦 = 2𝑛+1 and  𝑧 = 5(3)𝑛 are satisfies the integer solution of Diophantine equation 21𝑥2 +

𝑦2 = 𝑧2.  

Since 21(2𝑛+1)2 + ((2)𝑛)2 = (5(3)𝑛)2. 

Lemma 20.1: Reciprocal form of above Diophantine Equation 
21

𝑝2 +
1

𝑞2 =
1

ℎ2. 

 Which is having different sets of integer solutions 

 𝑝 = 𝑦𝑧 = 10(6𝑛),  𝑞 = 𝑥𝑧 = 5(6𝑛) and  ℎ = 𝑥𝑦 = (2)2𝑛+1. 

Since 
21

(10(6𝑛))
2 +

1

(5(6𝑛))
2 =

1

((2)2𝑛+1)2
 

some special collection of Diophantine Equations, whose solutions are obtained from standard Pythagorean 

theorem. 

Case 21: Consider Diophantine equation  𝑥3 + 𝑦4 = 𝑧5 having integer solution is 

 𝑥 = 28,  𝑦 = 26 and  𝑧 = 25. 

Case 22: Consider Diophantine equation  𝑥3 + 𝑦3 = 𝑧2 having integer solution is 

 𝑥 = 28,  𝑦 = 29 and  𝑧 = 3(2)12. 

Case 23: Consider Diophantine equation  𝑥2 + 𝑦3 + 𝑧4 = 𝑤5 having integer solution is 

 𝑥 = 312,  𝑦 = 38 , 𝑧 = 36 and 𝑤 = 35. 

Case 24: Consider Diophantine equation  𝑥2 + 𝑦3 + 𝑧4 + 𝑤5 = 𝑢2 having integer solution is 𝑥 = 430,  𝑦 = 420 ,  

𝑧 = 415 , 𝑤 = 412 and 𝑢 = 261. 

Case 25: Consider the Pythagorean (4;2) tuples equation as follows 

𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2 + 𝑢2 ,having different sets of integer solutions is illustrated below: 

 𝑝 = 𝑥2𝑦ℎ ,  𝑞 = 𝑦2𝑥ℎ ,  𝑟 = 𝑦ℎ, s= 𝑥ℎ, t = 𝑥𝑦,  u = 𝑥𝑦𝑧ℎ  

where 𝑥 = 𝑏𝑐 , 𝑦 = 𝑐𝑎, ℎ = 𝑎𝑏 , z = 𝑐2  with (a, b, c) is a Pythagorean triplet, which is satisfies 𝑎2 + 𝑏2 = 𝑐2. 

Proof: We know that if (a, b, c) is a Pythagorean triplet, then is satisfies 𝑎2 + 𝑏2 = 𝑐2. 

if (a, b, c) is a Pythagorean triplet then (b c, a c, a b) is also a Reciprocal Pythagorean triplet. i.e. if 𝑥 = 𝑏𝑐 , 𝑦 =

𝑐𝑎, ℎ = 𝑎𝑏 then 
1

𝑥2 +
1

𝑦2 =
1

ℎ2………….[1] 
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Also, if (a, b, c) is a Pythagorean triplet then (bc, ac, 𝑐2) is also a Pythagorean triplet. 

i.e 𝑥 = 𝑏𝑐 , 𝑦 = 𝑐𝑎,  z = 𝑐2 then 𝑥2 + 𝑦2 = 𝑧2………….[2] 

Adding equations [1] ,[2], we obtain  

𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2 + 𝑢2, having different sets of integer solutions is illustrated below: 

 𝑝 = 𝑥2𝑦ℎ ,  𝑞 = 𝑦2𝑥ℎ ,  𝑟 = 𝑦ℎ, s= 𝑥ℎ, t = 𝑥𝑦,  u = 𝑥𝑦𝑧ℎ  

where 𝑥 = 𝑏𝑐 , 𝑦 = 𝑐𝑎, ℎ = 𝑎𝑏 , z = 𝑐2  with (a, b, c) is a Pythagorean triplet, which is satisfies 𝑎2 + 𝑏2 = 𝑐2. 

E.g.1: Choose One of the Pythagorean triplets (a, b, c) is (3, 4, 5), which follows 

 x = bc = 20 , y = ca = 15, h = ab = 12 , z = c2 = 25 

p = x2yh = 72000 ,  q = y2xh = 54000 ,  r = yh = 180, s= xh=240, t = xy = 300,  

u = xyzh = 90000 . 

 p2 + q2 + r2 + s2 = 8100090000 

t2 + u2 = 8100090000. Hence p2 + q2 + r2 + s2 = t2 + u2 

 Also, note that (a, b, c) and (x, y, z) are Pythagorean triplets. 

i.e.  𝑎2 + 𝑏2 = 𝑐2 and 𝑥2 + 𝑦2 = 𝑧2 

Also, (x, y, h) is Reciprocal Pythagorean triplet. i.e. 
1

𝑥2 +
1

𝑦2 =
1

ℎ2. 

Case 25.1: Consider the Pythagorean (4;2) tuples equation as follows 

𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2 + 𝑢2 having different sets of integer solutions is illustrated below: 

𝑖f p is odd then 𝑞 = 𝑝 + 1 ,  𝑟 =
𝑝2−1

2
, s= (

𝑝+1

2
)

2

− 1 , t =
𝑝2+1

2
,  u = (

𝑝+1

2
)

2

+ 1 . 

We can verify it easily by replacing some odd integer p. 

Suppose 𝑝 = 3 𝑡ℎ𝑒𝑛 𝑞 = 4, 𝑟 = 4, 𝑠 = 3, 𝑡 = 5, 𝑢 = 5. 

Hence 𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 32 + 42 + 42 + 32 = 50 = 𝑡2 + 𝑢2 

Case 25.2: Consider the Pythagorean (4;2) tuples equation as follows 

𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2 + 𝑢2 

different sets of integer solutions is illustrated below: 

𝑖f p is even then 𝑞 = 𝑝 + 1 ,  𝑟 = (
𝑝

2
)

2

− 1, s=
(𝑝+1)2−1

2
 , t = (

𝑝

2
)

2

+ 1,  u =
(𝑝+1)2+1

2
  . 

We can verify it easily by replacing some even integer p. 

Suppose 𝑝 = 4 𝑡ℎ𝑒𝑛 𝑞 = 5, 𝑟 = 3, 𝑠 = 12, 𝑡 = 5, 𝑢 = 13. 

Hence 𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 42 + 52 + 32 + 122 = 194 = 𝑡2 + 𝑢2 

Case 25.3: Consider the Pythagorean (4;2) tuples equation as follows 

𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2 + 𝑢2 having different sets of integer solutions is illustrated below: 

𝑖f p is even then 𝑞 = 𝑝 − 1 ,  𝑟 = (
𝑝

2
)

2

− 1, s=
(𝑝−1)2−1

2
 , t = (

𝑝

2
)

2

+ 1,  u =
(𝑝−1)2+1

2
 .  

We can verify it easily by replacing some even integer p. 

Case 25.4: Consider the Pythagorean (4;2) tuples equation as follows 

𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2 + 𝑢2,  having different sets of integer solutions is illustrated below: 

𝑖f p is odd then 𝑞 = 𝑝 − 1 ,  𝑟 =
𝑝2−1

2
, s= (

𝑝−1

2
)

2

− 1 , t =
𝑝2+1

2
,  u = (

𝑝−1

2
)

2

− 1.  
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We can verify it easily by replacing some odd integer p 

Case 26: Consider the Pythagorean (2;2) tuples equation as follows 

 𝑝2 + 𝑞2 = 𝑟2 + 𝑠2  Having two types of solutions 

Case 26.1: If p is an odd, then different sets of integer solutions is illustrated below 

 𝑞 = (
𝑝2−1

4
)

2

+ 1,  𝑟 = (
𝑝2−1

4
)

2

− 1 and 𝑠 =
𝑝2+1

2
 

Proof: From Reference [10],[11],[12], We know that, if p is odd then (p, 
𝑝2−1

2
, 

𝑝2+1

2
) is a Pythagorean triplet. i.e. 

𝑝2 + (
𝑝2−1

2
)

2

= (
𝑝2+1

2
)

2

.  

Also, we know that, if p is even then (p, (
𝑝

2
)

2

− 1, (
𝑝

2
)

2

+ 1) is a Pythagorean triplet. 

 If p is odd then 
𝑝2−1

2
 is an even number. 

 Hence (
𝑝2−1

2
, (

𝑝2−1

4
)

2

− 1, (
𝑝2−1

4
)

2

+ 1) is a Pythagorean triplet. 

It follows that if p is odd then 𝑝2 + ((
𝑝2−1

4
)

2

+ 1)
2

= ((
𝑝2−1

4
)

2

− 1)
2

+ (
𝑝2+1

2
)

2

. 

Hence  𝑝2 + 𝑞2 = 𝑟2 + 𝑠2.  

Case 26.2: If p is an even integer, then different sets of integer solutions is illustrated below 

𝑞 =
((

𝑝

2
)
2
−1)

2

+1

2
,  𝑟 =

((
𝑝

2
)
2
−1)

2

−1

2
 and   𝑠 = (

𝑝

2
)

2

+ 1. 

Proof: If p is even then (
𝑝

2
)

2

− 1 is odd number.  

Hence ((
𝑝

2
)

2

− 1, 
((

𝑝

2
)
2
−1)

2

−1

2
, 

((
𝑝

2
)
2
−1)

2

+1

2
) is a Pythagorean triplet.  

if p is even then (p, (
𝑝

2
)

2

− 1, (
𝑝

2
)

2

+ 1) is a Pythagorean triplet. 

𝑝2 + ((
𝑝

2
)

2

− 1)
2

= ((
𝑝

2
)

2

+ 1)
2

. 

𝑝2 + (
((

𝑝

2
)
2
−1)

2

+1

2
)

2

− (
((

𝑝

2
)
2
−1)

2

−1

2
)

2

= ((
𝑝

2
)

2

+ 1)
2

. 

𝑝2 +

(

 
((

𝑝
2
)

2

− 1)
2

+ 1

2

)

 

2

=

(

 
((

𝑝
2
)

2

− 1)
2

− 1

2

)

 

2

+ ((
𝑝

2
)

2

+ 1)
2

. 

Hence 𝑝2 + 𝑞2 = 𝑟2 + 𝑠2.  

If p is an even integer, then different sets of integer solutions is illustrated below 

 𝑞 =
((

𝑝

2
)
2
−1)

2

+1

2
,  𝑟 =

((
𝑝

2
)
2
−1)

2

−1

2
 and  𝑠 = (

𝑝

2
)

2

+ 1. 

We can verify it easily by replacing some even integer p. 

Case 27: Consider the Pythagorean (3;1) tuples equation as follows  𝑝2 + 𝑞2 + 𝑟2 = 𝑠2 
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Having two types of solutions 

Case 27.1: If p is an odd, then different sets of integer solutions is illustrated below 

 𝑞 =
𝑝2−1

2
,  𝑟 =

(
𝑝2+1

2
)
2

−1

2
   and  𝑠 =

(
𝑝2+1

2
)
2

+1

2
 

Proof: if p is odd then (p, 
𝑝2−1

2
, 

𝑝2+1

2
) is a Pythagorean triplet. i.e. 𝑝2 + (

𝑝2−1

2
)

2

= (
𝑝2+1

2
)

2

.  

Also, if p is odd then 
𝑝2+1

2
 is also odd integer. Hence  (

𝑝2+1

2
,
(
𝑝2+1

2
)
2

−1

2
,
(
𝑝2+1

2
)
2

+1

2
) is also a Pythagorean triplet. 

Hence (
𝑝2+1

2
)

2

+ (
(
𝑝2+1

2
)
2

−1

2
)

2

= (
(
𝑝2+1

2
)
2

+1

2
)

2

. 

(
𝑝2+1

2
)

2

= (
(
𝑝2+1

2
)
2

+1

2
)

2

− (
(
𝑝2+1

2
)
2

−1

2
)

2

. 

If p is odd then (p, 
𝑝2−1

2
, 

𝑝2+1

2
) is a Pythagorean triplet. i.e. 𝑝2 + (

𝑝2−1

2
)

2

= (
𝑝2+1

2
)

2

. 

𝑝2 + (
𝑝2−1

2
)

2

= (
(
𝑝2+1

2
)
2

+1

2
)

2

− (
(
𝑝2+1

2
)
2

−1

2
)

2

. 

𝑝2 + (
𝑝2−1

2
)

2

+ (
(
𝑝2+1

2
)
2

−1

2
)

2

= (
(
𝑝2+1

2
)
2

+1

2
)

2

. Hence 𝑝2 + 𝑞2 + 𝑟2 = 𝑠2 . 

Case 27.2: If p is an even, then different sets of integer solutions is illustrated below 

𝑞 = (
𝑝

2
)

2

− 1,  𝑟 =
((

𝑝

2
)
2
+1)

2

−1

2
  and  𝑠 = [

 
 
 
 ((

𝑝
2)

2
+1)

2

+1

2

]
 
 
 
 
2

+1

2
. 

Proof: If p is even then (
𝑝

2
)

2

+ 1 is odd. Hence ((
𝑝

2
)

2

+ 1 ,
((

𝑝

2
)
2
+1)

2

−1

2
,
((

𝑝

2
)
2
+1)

2

+1

2
) is also a Pythagorean triplet. 

Also, we know that if p is even then (p, (
𝑝

2
)

2

− 1, (
𝑝

2
)

2

+ 1) is a Pythagorean triplet. 

Hence  𝑝2 + ((
𝑝

2
)

2

− 1)
2

= ((
𝑝

2
)

2

+ 1)
2

.  

𝑝2 + ((
𝑝

2
)

2

− 1)
2

= (
((

𝑝

2
)
2
+1)

2

+1

2
)

2

− (
((

𝑝

2
)
2
+1)

2

−1

2
)

2

. 

𝑝2 + ((
𝑝

2
)

2

− 1)
2

+ (
((

𝑝

2
)
2
+1)

2

−1

2
)

2

= (
((

𝑝

2
)
2
+1)

2

+1

2
)

2

. 

Hence 𝑝2 + 𝑞2 + 𝑟2 = 𝑠2 . 

Case 27.3: 𝑝2 + 𝑞2 + 𝑟2 = 𝑠2 having integer solution in exponential form as follows. 
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𝑝 = 23, 𝑞 = 25, 𝑟 = 26, 𝑠 = 9 ∗ 23 since (23)2 + (25)2 + (26)2 = (9 ∗ 23)2 

Case 28: Consider the Pythagorean (4;1) tuples equation as follows 

 𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2 

Having two types of solutions 

Case 28.1: If p is an odd, then different sets of integer solutions is illustrated below 

 𝑞 =
𝑝2−1

2
,  𝑟 =

(
𝑝2+1

2
)
2

−1

2
 ,  𝑠 = [

 
 
 
 (

𝑝2+1
2 )

2

+1

2

]
 
 
 
 
2

−1

2
 and 𝑡 = [

 
 
 
 (

𝑝2+1
2 )

2

+1

2

]
 
 
 
 
2

+1

2
 

Proof: Similar Proof of Case 27.1, we can verify easily  𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2. If p is odd then 𝑝2 + (
𝑝2−1

2
)

2

+

(
(
𝑝2+1

2
)
2

−1

2
)

2

+

(

 
 
 
 

[
 
 
 
 (

𝑝2+1
2 )

2

+1

2

]
 
 
 
 
2

−1

2

)

 
 
 
 

2

=

(

 
 
 
 

[
 
 
 
 (

𝑝2+1
2 )

2

+1

2

]
 
 
 
 
2

+1

2

)

 
 
 
 

2

. 

We can verify it easily by replacing some odd integer p. 

Case 28.2: If p is an even integer, then different sets of integer solutions is illustrated below 

𝑞 = (
𝑝

2
)

2

− 1, 𝑟 =
((

𝑝

2
)
2
+1)

2

−1

2
 ,  𝑠 = [

 
 
 
 ((

𝑝
2)

2
+1)

2

+1

2

]
 
 
 
 
2

−1

2
 and 𝑡 = [

 
 
 
 ((

𝑝
2)

2
+1)

2

+1

2

]
 
 
 
 
2

+1

2
. 

Proof: Similar Proof of above case. 

𝑝2 + ((
𝑝

2
)

2

− 1)
2

+ (
((

𝑝

2
)
2
+1)

2

−1

2
)

2

+

(

 
 
 
 

[
 
 
 
 ((

𝑝
2)

2
+1)

2

+1

2

]
 
 
 
 
2

−1

2

)

 
 
 
 

2

=

(

 
 
 
 

[
 
 
 
 ((

𝑝
2)

2
+1)

2

+1

2

]
 
 
 
 
2

+1

2

)

 
 
 
 

2

. 

We can verify it easily by replacing some even integer p. 

Case 29: Consider higher degree Diophantine equation  𝑝4 + 𝑞4 + 2𝑟2 = 𝑠4 

Having two types of solutions 

Case 29.1: If p is an odd, then different sets of integer solutions is illustrated below 

 𝑞 =
𝑝2−1

2
,  𝑟 =

𝑝(𝑝2−1)

2
 and 𝑠 =

𝑝2+1

2
. 

Proof: similar proof of above. 

Case 29.2: If p is an even integer, then different sets of integer solutions is illustrated below 

𝑞 = (
𝑝

2
)

2

− 1,  𝑟 = 𝑝 ((
𝑝

2
)

2

− 1) and  𝑠 = (
𝑝

2
)

2

+ 1 

Proof: similar proof of above. 

 

Case 29.3: If (x, y, z) is a Pythagorean triplet then 𝑥4 + 𝑦4 + 2𝑥2𝑦2 = 𝑧4. 
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Proof: If (x, 𝑦, 𝑧) is a Pythagorean triplet. i.e. 𝑥2 + 𝑦2 = 𝑧2. Square on Both sides, we obtain 

(𝑥2 + 𝑦2)2 = (𝑧2)2 implies that 𝑥4 + 𝑦4 + 2𝑥2𝑦2 = 𝑧4. 

Case 30: Consider the Pythagorean (3;3) tuples equation as follows 

𝑝2 + 𝑞2 + 𝑡2 = 𝑟2 + 𝑠2 + 𝑢2 

then different sets of integer solutions is illustrated below 

 𝑝 = 𝑥2𝑦ℎ ,  𝑞 = 𝑦2𝑥ℎ ,  𝑟 = 𝑦ℎ, s= 𝑥ℎ,   t = 𝑥𝑦, u = 𝑥𝑦𝑧ℎ  

where 𝑥 = 𝑏𝑐 , 𝑦 = 𝑐𝑎, ℎ = 𝑎𝑏 , z = 𝑐2  with (a, b, c) is a Pythagorean triplet, which is satisfies 𝑎2 + 𝑏2 = 𝑐2. 

E.g.1: Choose the Pythagorean triplet (a, b, c) is (3, 4, 5), which follows 

 x = bc = 20 , y = ca = 15, h = ab = 12 , z = c2 = 25 

p = x2yh = 72000 ,  q = y2xh = 54000 ,  r = yh = 180, s= xh=240, t = xy = 300,  

u = xyzh = 90000  

p2 + q2 + t2 = 8100090000 

𝑟2 + 𝑠2 + 𝑢2 = 8100090000. Hence 𝑝2 + 𝑞2 + 𝑡2 = 𝑟2 + 𝑠2 + 𝑢2. 

Case 31: Consider higher degree Diophantine equation  𝑝6 + 𝑞6 + 3𝑟2 = 𝑠6 

Having two types of solutions 

Case 31.1: If p is an odd, then different sets of integer solutions is illustrated below 

 𝑞 =
𝑝2−1

2
,  𝑟 =

𝑝(𝑝4−1)

4
 and 𝑠 =

𝑝2+1

2
. 

Proof: We know that (𝑧2)3 = (𝑧3)2 and If p is odd then (p, 
𝑝2−1

2
, 

𝑝2+1

2
) is a Pythagorean triplet. i.e. 𝑝2 +

(
𝑝2−1

2
)

2

= (
𝑝2+1

2
)

2

. Apply cube of both sides, obtain (𝑝2 + (
𝑝2−1

2
)

2

)
3

= (
𝑝2+1

2
)

6

. 

Hence, we can verify easily, if p is odd then  𝑝6 + (
𝑝2−1

2
)

6

+ 3(
𝑝(𝑝4−1)

2
)

2

= (
𝑝2+1

2
)

6

. Hence 

𝑝6 + 𝑞6 + 3𝑟2 = 𝑠6 with 𝑞 =
𝑝2−1

2
,  𝑟 =

𝑝(𝑝4−1)

4
 and 𝑠 =

𝑝2+1

2
 whenever p is odd. 

We can verify it easily by replacing some odd integer p. 

Case 31.2: If p is an even integer, then different sets of integer solutions is illustrated below 

𝑞 = (
𝑝

2
)

2

− 1,  𝑟 = 𝑝 ((
𝑝

2
)

4

− 1) and  𝑠 = (
𝑝

2
)

2

+ 1 

Proof: if p is even then (p, (
𝑝

2
)

2

− 1, (
𝑝

2
)

2

+ 1) is a Pythagorean triplet. 

Hence  𝑝2 + ((
𝑝

2
)

2

− 1)
2

= ((
𝑝

2
)

2

+ 1)
2

. Apply cube on both sides, obtain 

(𝑝2 + ((
𝑝

2
)

2

− 1)
2

)

3

= ((
𝑝

2
)

2

+ 1)
2

. Hence 𝑝6 + ((
𝑝

2
)

2

− 1)
6

+ 3(𝑝 ((
𝑝

2
)

4

− 1))

2

= ((
𝑝

2
)

2

+ 1)
6

. 

Hence 𝑝6 + 𝑞6 + 3𝑟2 = 𝑠6 with 𝑞 = (
𝑝

2
)

2

− 1,  𝑟 = 𝑝 ((
𝑝

2
)

4

− 1) and  𝑠 = (
𝑝

2
)

2

+ 1 with p is even. We can 

verify it easily by replacing some even integer p. 

Conclusion: In this paper, First focused to study infinitely many integer solutions of following Diophantine 

Equations. 
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2𝑥2 + 𝑦2 = 𝑧2;   3𝑥2 + 𝑦2 = 𝑧2;    4𝑥2 + 𝑦2 = 𝑧2;    5𝑥2 + 𝑦2 = 𝑧2; 6𝑥2 + 𝑦2 = 𝑧2; 

7𝑥2 + 𝑦2 = 𝑧2;   8𝑥2 + 𝑦2 = 𝑧2 ;  9𝑥2 + 𝑦2 = 𝑧2; 10𝑥2 + 𝑦2 = 𝑧2 ;  11𝑥2 + 𝑦2 = 𝑧2; 

12𝑥2 + 𝑦2 = 𝑧2;   13𝑥2 + 𝑦2 = 𝑧2 ;  14𝑥2 + 𝑦2 = 𝑧2; 15𝑥2 + 𝑦2 = 𝑧2 ;  16𝑥2 + 𝑦2 = 𝑧2; 

17𝑥2 + 𝑦2 = 𝑧2;   18𝑥2 + 𝑦2 = 𝑧2 ;  19𝑥2 + 𝑦2 = 𝑧2; 20𝑥2 + 𝑦2 = 𝑧2 ;  21𝑥2 + 𝑦2 = 𝑧2 ; 

Also, 𝑘𝑥2 + 𝑦2 = 𝑧2 having ellipse equation form of   𝑘 (
𝑥

𝑧
)

2

+ (
𝑦

𝑧
)

2

= 1; Also, focused to study Reciprocal form 

of above Diophantine Equation 
𝑘

𝑝2 +
1

𝑞2 =
1

ℎ2. Which is having different sets of integer solutions of  𝑝 = 𝑦𝑧,  𝑞 =

𝑥𝑧 and  ℎ = 𝑥𝑦.Also, focused to obtained infinitely many Integer solutions of following Special Diophantine 

Pythagorean Equations. 

 𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2 + 𝑢2;     𝑝2 + 𝑞2 + 𝑟2 = 𝑠2; 𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 𝑡2; 

  𝑝4 + 𝑞4 + 2𝑟2 = 𝑠4;    𝑝2 + 𝑞2 + 𝑡2 = 𝑟2 + 𝑠2 + 𝑢2 ;  𝑝6 + 𝑞6 + 3𝑟2 = 𝑠6;  

𝑥3 + 𝑦4 = 𝑧5;  𝑥3 + 𝑦3 = 𝑧2;      𝑥2 + 𝑦3 + 𝑧4 = 𝑤5 ; 𝑥2 + 𝑦3 + 𝑧4 + 𝑤5 = 𝑢2 ; 
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