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= (𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)
𝟐

𝑷𝜷  

With  𝜶 > 𝟎, 𝜷 = 𝟏, 𝟐, 𝟑, 𝟒,5,6,7 and  

𝒙 < 𝒚 < 𝒘 < 𝒛. 
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ABSTRACT: 

 This paper focused on a study to find integer design of solutions Diophantine Equation 𝜶(𝑿𝟒 + 𝒀𝟒)𝟐 =

(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝟐𝑷𝜷 with 𝛼 > 0, 𝜷 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 𝒂𝒏𝒅  𝒙 < 𝒚 < 𝒘 < 𝒛 with Mathematical induction 

& generation of Pythagorean triplets.  

for 𝜷 = 𝟏, having integer design of solution is parameterized by positive integers k and n, with variables 

defined as:  

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘4𝑛, 𝛼 = (𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟐, having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘2𝑛, 𝛼 = (𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

 for 𝜷 = 𝟑 , having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘2𝑛, 𝛼 = 𝑘2𝑛(𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟒 , having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘𝑛, 𝛼 = ((𝑘6 + 𝑘4)2), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟓 , having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘2𝑛, 𝛼 = 𝑘𝑛(𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟔 ,  having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘𝑛, 𝛼 = 𝑘2𝑛(𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟕 ,  having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘𝑛, 𝛼 = 𝑘3𝑛(𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

KEYWORDS: Diophantine Equation, exponential, Pythagorean triplet, Integer design. 
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I. INTRODUCTION 

Diophantine equations—polynomial equations with integer solutions—are a central topic in number theory. 

Among their many variants, exponential Diophantine equations involve terms where variables appear as 

exponents. Finding integer solutions to such equations is notably complex and has implications in mathematics, 

cryptography, and several scientific fields. Historical Context and Theoretical Background 

Classical Diophantine Equations: Traditionally, research started with linear and polynomial forms, such as the 

well-known cases of Pythagorean triples . 

Exponential Generalization: The study of exponential forms expanded from these roots, posing questions that 

often lack general solution methods and in some cases are proven to be undecidable. In this paper, focused to find 

the general exponential integer solution of 

The general exponential integer solution of 𝜶(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝟐𝑷𝜷   

With  𝜶 > 𝟎, is derived from fixed value of 𝜷 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 𝒂𝒏𝒅 𝒙 < 𝒀 < 𝒘 < 𝒛. 

II. METHODOLOGY 

In this Diophantine equation 𝜶(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝟐𝑷𝜷 ,  

choose ( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = 2𝑘2, 𝐷 = (𝑘4 − 1) , where 𝑪𝟐 + 𝑫𝟐 =

(𝟏 + 𝒌𝟒)𝟐 

III. RESULTS & DISCUSSIONS: 

 Proportion 1: A Study on integer design of solution of above Diophantine Equation at 

 𝜷 = 𝟏  is    𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃  

Explanation: Let x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘4𝑛. 

Consider 𝛼(𝑋4 + 𝑌4) = 𝛼𝑘4𝑛(1 + 𝑘4) implies 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝛼𝑘8𝑛(1 + 𝑘4)2 

Again consider (𝑍2 + 𝑊2)2𝑃 = 𝑘8𝑛(𝑘6 + 𝑘4)2. 

It follows that 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃  implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘8𝑛(𝑘6 + 𝑘4)2 implies 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)(𝑘6 + 𝑘4)2.  

Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐. Hence 𝛼 = (𝑘6 + 𝑘4)2. 
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Hence 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃 having integer design of solution is parameterized by 

integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘4𝑛, 𝛼 = (𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑘6 + 𝑘4)2(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐 = 𝒌𝟖𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃 = (𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)2𝑘4𝑛 = 𝒌𝟖𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 

 

Proportion 2: A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟐  is    𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃2 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘2𝑛 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝛼𝑘8𝑛(1 + 𝑘4)2. 

Again consider (𝑍2 + 𝑊2)2𝑷𝟐 = 𝑘8𝑛(𝑘6 + 𝑘4)2. 

It follows that 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃2 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘8𝑛(𝑘6 + 𝑘4)2 implies 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)(𝑘6 + 𝑘4)2. Solve for 𝛼, 

whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐. Hence 𝛼 = (𝑘6 + 𝑘4)2. 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑘6 + 𝑘4)2(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐 = 𝒌𝟖𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃2 = (𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)2𝑘4𝑛 = 𝒌𝟖𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 
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Proportion 3: A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟑  is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝟐𝑷𝟑 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘2𝑛 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝛼𝑘8𝑛(1 + 𝑘4)2. 

Again consider (𝑍2 + 𝑊2)2𝑷𝟑 = 𝑘10𝑛(𝑘6 + 𝑘4)2. 

It follows that 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃3 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘10𝑛(𝑘6 + 𝑘4)2 implies  

𝛼(1 + 𝑘4)2 = 𝑘2𝑛(𝐶2 + 𝐷2)(𝑘6 + 𝑘4)2. Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐. Hence 𝛼 = 𝑘2𝑛(𝑘6 + 𝑘4)2. 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝑘2𝑛 (𝑘6 + 𝑘4)2(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐 = 𝒌𝟏𝟎𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃3 = (𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)2𝑘6𝑛 = 𝒌𝟏𝟎𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 

 

Proportion 4 A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟒  is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝟐𝑷𝟒. 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘𝑛 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝛼𝑘8𝑛(1 + 𝑘4)2. 

Again consider (𝑍2 + 𝑊2)2𝑷𝟒 = 𝑘8𝑛(𝑘6 + 𝑘4)2. 

It follows that 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)𝑃4 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘8𝑛(𝑘6 + 𝑘4)2 implies 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)(𝑘6 + 𝑘4)2. Solve for 𝛼, 

whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 
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From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐Hence 𝛼 = (𝑘6 + 𝑘4)2. 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑘6 + 𝑘4)2(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐 = 𝒌𝟖𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃4 = (𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)2𝑘4𝑛 = 𝒌𝟖𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 

 

Proportion 5: A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟓  is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟓. 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘𝑛 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝛼𝑘8𝑛(1 + 𝑘4)2. 

Again consider (𝑍2 + 𝑊2)2𝑷𝟓 = 𝑘9𝑛(𝑘6 + 𝑘4)2. 

It follows that 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)𝑃5 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘9𝑛(𝑘6 + 𝑘4)2 implies 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘𝑛(𝑘6 + 𝑘4)2. Solve for 𝛼, 

whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐Hence 𝛼 = 𝑘𝑛(𝑘6 + 𝑘4)2. 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝑘𝑛 (𝑘6 + 𝑘4)2(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐 = 𝒌𝟗𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃5 = (𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)2𝑘5𝑛 = 𝒌𝟗𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 
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Proportion 6: A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟔  is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟔. 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘𝑛 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝛼𝑘8𝑛(1 + 𝑘4)2. 

Again consider (𝑍2 + 𝑊2)2𝑷𝟔 = 𝑘10𝑛(𝑘6 + 𝑘4)2. 

It follows that 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃6 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘10𝑛(𝑘6 + 𝑘4)2 implies  

𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘2𝑛(𝑘6 + 𝑘4)2. Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐Hence 𝛼 = 𝑘2𝑛(𝑘6 + 𝑘4)2. 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝑘2𝑛 (𝑘6 + 𝑘4)2(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐 = 𝒌𝟏𝟎𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃6 = (𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)2𝑘6𝑛 = 𝒌𝟏𝟎𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 

 

Proportion 7: A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟕  is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟕. 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘𝑛 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝛼𝑘8𝑛(1 + 𝑘4)2. 

Again consider (𝑍2 + 𝑊2)2𝑷𝟕 = 𝑘11𝑛(𝑘6 + 𝑘4)2. 

It follows that 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃7 implies that  
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𝛼𝑘8𝑛(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘11𝑛(𝑘6 + 𝑘4)2 implies 

 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘3𝑛(𝑘6 + 𝑘4)2. Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐Hence 𝛼 = 𝑘3𝑛(𝑘6 + 𝑘4)2. 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝑘3𝑛 (𝑘6 + 𝑘4)2(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐 = 𝒌𝟏𝟏𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃5 = (𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)2𝑘7𝑛 = 𝒌𝟏𝟏𝒏(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 

IV. MAIN RESULT: 

A Study on exponential integer solution of above Diophantine Equation at 

   𝜶(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝜷. 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑝 = 𝑘𝑛 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝛼𝑘8𝑛(1 + 𝑘4)2. 

Again consider (𝑍2 + 𝑊2)2𝑷𝜷 = 𝑘4𝑛+𝑛𝜷(𝑘6 + 𝑘4)2. 

It follows that 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)𝑃𝜷 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘4𝑛+𝑛𝜷(𝑘6 + 𝑘4)2 implies 

 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘−4𝑛+𝑛𝜷(𝑘6 + 𝑘4)2. Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐Hence 𝛼 = 𝑘−4𝑛+𝑛𝜷(𝑘6 + 𝑘4)2 = 𝑘(𝛽−4)𝑛(𝑘6 + 𝑘4)2. 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐 = 𝑘(𝛽−4)𝑛(𝑘6 + 𝑘4)2 (𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐 = 𝒌(𝛽+4)𝑛(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 
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= (𝐶2 + 𝐷2)(𝑍2 + 𝑊2)2𝑃𝛽 = (𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)2𝑘𝛽𝑛  

= 𝒌(𝛽+4)𝑛(𝑘6 + 𝑘4)2(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 

 

 

V. CONCLUSION 

This equation generalizes classical Diophantine problems, blending sums of fourth powers with multiplicative 

factorizations. While challenging, targeted parametrization and modular analysis can yield solutions. Future work 

may classify solutions for specific α, β or link to broader number-theoretic frameworks. The parametric 

framework provides infinite families of solutions by exploiting algebraic identities and modular arithmetic. Future 

work could explore non-parametric solutions or generalizations to higher exponents.  

To find integer design of solutions Diophantine Equation 

 𝜶(𝑿𝟒 + 𝒀𝟒)𝟐 = (𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝜷 with 𝛼 > 0, 𝜷 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 𝒂𝒏𝒅 

  𝒙 < 𝒚 < 𝒘 < 𝒛 with Mathematical induction & generation of Pythagorean triplets.  

for 𝜷 = 𝟏, having integer design of solution is parameterized by positive integers k and n, with variables 

defined as:  

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘4𝑛, 𝛼 = (𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟐, having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘2𝑛, 𝛼 = (𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

 for 𝜷 = 𝟑 , having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘2𝑛, 𝛼 = 𝑘2𝑛(𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟒 , having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑝 = 𝑘𝑛 , 𝛼 = ((𝑘6 + 𝑘4)2), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟓 , having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘2𝑛, 𝛼 = 𝑘𝑛(𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟔 ,  having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑝 = 𝑘𝑛 , 𝛼 = 𝑘2𝑛(𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 
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 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟕 ,  having integer design of solution is parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛 , 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑝 = 𝑘𝑛 , 𝛼 = 𝑘3𝑛(𝑘6 + 𝑘4)2, 𝐶 = 2𝑘2, 

 𝐷 = 𝑘4 − 1. 
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