

Vol. 12, Special Issue, December 2025
National Conference on Earth, Elements and Energy:
Interdisciplinary Perspectives (NC3EIP-2025)



ISSN: 2350-0328

# Preparation and Characterization of SnO<sub>2</sub>, WO<sub>3</sub> and SnO<sub>2</sub>- WO<sub>3</sub> Hybrid Nanomaterials by Using Sol-Gel Method

S. S. Butle, G. T. Lamdhade, K. B. Raulkar

Department of Physics, Vidya Bharati Mahavidyalaya, Camp, Amravati

ABSTRACT: In this work, SnO<sub>2</sub>, WO<sub>3</sub>, and SnO<sub>2</sub>-WO<sub>3</sub> hybrid nanomaterials were synthesized via the sol-gel method and characterized for their potential gas-sensing applications. X-ray diffraction (XRD) analysis confirmed the successful formation of crystalline SnO<sub>2</sub> (rutile phase) and WO<sub>3</sub> (monoclinic phase), with the hybrid composites, NC-1 (20% SnO<sub>2</sub> - 80% WO<sub>3</sub>), NC-2 (40% SnO<sub>2</sub> - 60% WO<sub>3</sub>), and NC-3 (60% SnO<sub>2</sub> - 40% WO<sub>3</sub>), displaying diffraction peaks from both materials, indicating a well-integrated structure. Scanning electron microscopy (SEM) revealed uniform spherical nanoparticle morphologies with an average size range of 15–30 nm, which are favorable for enhancing gas-sensing performance. The gas-sensing behavior of the nanomaterials was evaluated for various gases, demonstrating superior sensitivity and faster response times for the SnO<sub>2</sub>-WO<sub>3</sub> hybrid composites compared to the individual oxides. Among the hybrids, NC-2 (40% SnO<sub>2</sub> - 60% WO<sub>3</sub>) exhibited the best gas-sensing performance, highlighting the synergistic effect of combining SnO<sub>2</sub> and WO<sub>3</sub> in enhancing gas-sensing properties [1-3]. These results make the SnO<sub>2</sub>-WO<sub>3</sub> hybrid materials promising candidates for future gas detection applications.

KEYWORDS: Gas sensors; nanomaterials; tungsten oxide; tin oxide; SnO<sub>2</sub>-WO<sub>3</sub>; air quality monitoring.

## I. INTRODUCTION

Metal-oxide nanomaterials-especially SnO<sub>2</sub> (tin oxide) and WO<sub>3</sub> (tungsten oxide) have attracted significant interest due to their distinctive chemical and physical properties. Their high efficiency, stability, affordability, and non-toxic nature make them valuable in applications such as catalysis, optical devices, chemical and biosensors, and various nanodevices. SnO<sub>2</sub>, WO<sub>3</sub>, and their hybrid nanocomposites (SnO<sub>2</sub>–WO<sub>3</sub>) demonstrate particularly strong gas-sensing capabilities. This enhanced performance results from their open, sponge-like porous morphology, which increases surface reactivity and promotes efficient gas interaction. Numerous synthesis approaches—including solid-state, electrochemical, hydrothermal, sonochemical, green methods, and thermal evaporation have been used to produce these nanomaterials [4-6].

In this study, we introduce a simple and cost-effective method for preparing SnO<sub>2</sub> and SnO<sub>2</sub>–WO<sub>3</sub> nanocomposites with varying stoichiometric ratios: NC-1 (20% SnO<sub>2</sub>, 80% WO<sub>3</sub>), NC-2 (40% SnO<sub>2</sub>, 60% WO<sub>3</sub>), and NC-3 (60% SnO<sub>2</sub>, 40% WO<sub>3</sub>). Their structural and morphological characteristics were analyzed, and their gas-sensing performance was evaluated. Among the composites, NC-2 exhibited the highest sensitivity and fastest response. These findings demonstrate the strong potential of SnO<sub>2</sub>–WO<sub>3</sub> hybrid nanomaterials for advanced gas detection and environmental monitoring applications [7-10].

#### II. RESEARCH REVIEW

SnO<sub>2</sub> and WO<sub>3</sub> are widely studied metal-oxide semiconductors known for their strong gas-sensing properties, thermal stability, and high surface reactivity. Earlier research shows that combining these oxides into SnO<sub>2</sub>–WO<sub>3</sub> hybrid nanomaterials enhances sensitivity and response speed due to improved charge transfer, increased active sites, and synergistic interactions between the two phases. Various synthesis methods have been reported, but the sol–gel technique remains preferred for its simplicity, cost-effectiveness, and ability to produce uniform nanoparticles. Previous studies also confirm that the crystalline structures of SnO<sub>2</sub> (tetragonal) and WO<sub>3</sub> (monoclinic) contribute significantly to their sensing performance. However, further investigation is needed to optimize composition ratios and understand their influence on gas-sensing behavior. This research addresses these aspects by preparing and characterizing SnO<sub>2</sub>, WO<sub>3</sub>, and SnO<sub>2</sub>–WO<sub>3</sub> composites using the sol–gel method.



**/** 



ISSN: 2350-0328

Vol. 12, Special Issue, December 2025
National Conference on Earth, Elements and Energy:
Interdisciplinary Perspectives (NC3EIP-2025)

## III. MATERIALS AND METHODS

## A. Preparation of SnO<sub>2</sub>, WO<sub>3</sub> and SnO<sub>2</sub>-WO<sub>3</sub> nanocomposites

SnO<sub>2</sub> nanoparticles were prepared via a sol-gel process by dissolving SnCl<sub>4</sub>·5H<sub>2</sub>O in double-distilled water and ethylene glycol at 60°C. NH<sub>4</sub>OH was added dropwise to form a white gel, which was ultrasonicated, filtered, washed, and dried at 120 °C for 24 hours to yield SnO<sub>2</sub> nanoparticles [11-12].

WO<sub>3</sub> nanoparticles were synthesized via a sol-gel method. WCl<sub>6</sub> was dissolved in ethanol to form W(OC<sub>2</sub>H<sub>5</sub>)<sub>6</sub>, followed by addition of NH<sub>4</sub>OH and 24 hours of stirring under ice-cooling to induce hydrolysis. The resulting precipitate was washed, centrifuged until chloride-free (verified with AgNO<sub>3</sub>), and then peptized with additional ammonium hydroxide. To improve colloidal stability,  $50 \,\mu$ L of Triton X-100 was added, allowing the WO<sub>3</sub> gel to form. The gel was spin-coated onto a cleaned alumina substrate at 500 rpm for 30 s and then 2000 rpm for 90 s, producing a uniform coating. The WO<sub>3</sub>-coated alumina substrates were calcined at 300–600 °C for 1 hour, then slowly cooled in the furnace to obtain well-crystallized WO<sub>3</sub> arrays with improved structural ordering [13-14].

 $SnO_2$ – $WO_3$  nanocomposites were synthesized by mixing stoichiometric amounts of Sn and W precursors in a solvent system of water and ethylene glycol. The mixture underwent the sol-gel process, where ammonia was added to induce hydrolysis and condensation. The resulting gel was dried and calcined to form the  $SnO_2$ – $WO_3$  composite nanoparticles. The uniform mixing of  $SnO_2$  and  $WO_3$  at the molecular level resulted in well-dispersed composite powders with enhanced properties [15-16].

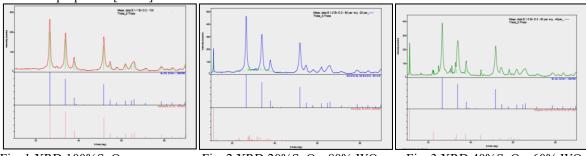



Fig. 1 XRD 100%SnO<sub>2</sub>

Fig. 2 XRD 20%SnO<sub>2</sub>- 80% WO<sub>3</sub>

Fig. 3 XRD 40%SnO<sub>2</sub>- 60% WO<sub>3</sub>

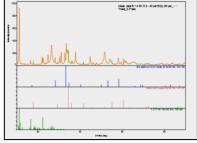



Fig. 4 XRD 60%SnO<sub>2</sub>- 40% WO<sub>3</sub>

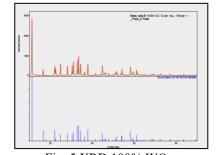



Fig. 5 XRD 100% WO<sub>3</sub>

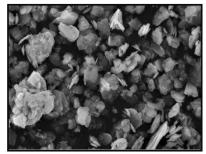



Image 1 SEM 100%SnO<sub>2</sub>

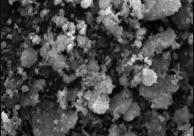



Image 2 SEM 20%SnO<sub>2</sub>- 80% WO<sub>3</sub>

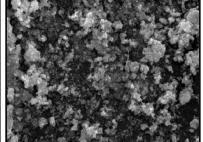



Image 3 SEM 40%SnO<sub>2</sub>-60%WO<sub>3</sub>



Vol. 12, Special Issue, December 2025
National Conference on Earth, Elements and Energy:

Interdisciplinary Perspectives (NC3EIP–2025)



ISSN: 2350-0328





Image 4 SEM 60%SnO<sub>2</sub>-40% WO<sub>3</sub>

Image 5 SEM 100%WO<sub>3</sub>

#### B. Characterization

SnO<sub>2</sub>, WO<sub>3</sub>, and SnO<sub>2</sub>–WO<sub>3</sub> hybrid nanomaterials were synthesized via the sol–gel method and characterized using XRD and SEM. XRD analysis confirmed their crystalline nature, with SnO<sub>2</sub> showing tetragonal rutile peaks and WO<sub>3</sub> exhibiting a monoclinic phase. The hybrid composite displayed peaks from both oxides, indicating successful composite formation without impurities. Crystallite sizes calculated by the Scherrer equation were within the nanometer range. SEM images revealed uniformly distributed, nearly spherical nanoparticles with slight agglomeration. The SnO<sub>2</sub>–WO<sub>3</sub> composite showed a more interconnected and compact morphology, demonstrating effective mixing and interaction between the two oxide phases [15-16].

#### IV. CONCLUSION

In conclusion, SnO<sub>2</sub>, WO<sub>3</sub>, and SnO<sub>2</sub>–WO<sub>3</sub> hybrid nanomaterials were successfully synthesized using the solgel method, a simple, cost-effective technique for producing highly crystalline nanostructures. XRD analysis confirmed the formation of pure SnO<sub>2</sub> (tetragonal rutile) and WO<sub>3</sub> (monoclinic) phases, while the hybrid composites showed peaks from both oxides, indicating successful integration without impurities. SEM images revealed uniform, spherical nanoparticles with well-connected surface morphology, particularly in the hybrid samples. The NC-2 (40% SnO<sub>2</sub>–60% WO<sub>3</sub>) composite exhibited enhanced gas-sensing properties, including higher sensitivity and faster response times, highlight the potential of these hybrid materials for gas detection and environmental monitoring [17-18].

#### REFERENCES

- Ksenija Maver , Iztok Acon, Mattia Fanetti, Samar Al Jitan , Giovanni Palmisano, Matjaz Valant, Urska Lavreni Stangar, Improved photocatalytic activity of SnO<sub>2</sub>-TiO<sub>2</sub> nanocomposite thin films prepared by low-temperature sol-gel method, Catalysis Today 397-399 (2022) 540–549, <a href="https://doi.org/10.1016/j.cattod.2021.06.018">https://doi.org/10.1016/j.cattod.2021.06.018</a>.
- Y. Yang, H. Li, H. Zhao, R. Qu, S. Zhang, W. Hu, X. Yu, X. Zhu, S. Liu, C. Zheng, X. Gao, Structure and crystal phase transition effect of SnO<sub>2</sub> doping on anatase TiO<sub>2</sub> for dichloromethane decomposition, J. Hazard. Mater. 371 (2019) 156–164, https://doi.org/10.1016/j.jhazmat.2019.02.103
- 3. K. Awa, R. Akashi, A. Akita, S. ichi Naya, H. Kobayashi, H. Tada, Highly efficient and selective oxidation of ethanol to acetaldehyde by a hybrid photocatalyst consisting of SnO<sub>2</sub> nanorod and rutile TiO<sub>2</sub> with heteroepitaxial junction, Chem. Phys. Chem. 20 (2019) 2155–2161, https://doi.org/10.1002/cphc.201900632
- 4. W. Sangchay, The self-cleaning and photocatalytic properties of TiO<sub>2</sub> doped with SnO<sub>2</sub> thin films preparation by sol-gel method, Energy Procedia 89 (2016) 170–176, <a href="https://doi.org/10.1016/j.egypro.2016.05.023">https://doi.org/10.1016/j.egypro.2016.05.023</a>.
- 5. A. Kusior, L. Zych, K. Zakrzewska, M. Radecka, Photocatalytic activity of TiO<sub>2</sub>/SnO<sub>2</sub> nanostructures with controlled dimensionality/complexity, Appl. Surf. Sci. 471 (2019) 973–985, <a href="https://doi.org/10.1016/j.apsusc.2018.11.226">https://doi.org/10.1016/j.apsusc.2018.11.226</a>.
- I. Rangel-V' azquez, G. Del Angel, V. Bertin, F. Gonz' alez, A. Vazquez-Zavala, A. Arrieta, J.M. Padilla, A. Barrera, E. Ramos-Ramirez, Synthesis and characterization of SnO<sub>2</sub> doped TiO<sub>2</sub> photocatalysts: effect of SnO<sub>2</sub> concentration on the textural properties and on the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, J. Alloy. Compd. 643 (2015) S144–S149, <a href="https://doi.org/10.1016/j.jallcom.2014.12.065">https://doi.org/10.1016/j.jallcom.2014.12.065</a>
   H. Jamalabadi, N. Alizadeh, Enhanced low-temperature response of Phys. WO. 1, 111
- 7. H. Jamalabadi, N. Alizadeh, Enhanced low-temperature response of PPy-WO<sub>3</sub> hybrid nanocomposite based gas sensor deposited by electrospinning method for selective and sensitive acetone detection, IEEE Sensor. J. 17 (8) (2017) 2322–2328, https://doi.org/10.1109/jsen.2017.2662716.
- 8. T.T.N. Hoa, D.T.T. Le, N. Van Toan, N. Van Duy, C.M. Hung, N. Van Hieu, N.D. Hoa, Highly selective H2S gas sensor based on WO<sub>3</sub>-coated SnO<sub>2</sub> nanowires, Mater. Today Commun. 26 (2021) 102094, https://doi.org/10.1016/j.mtcomm.2021.102094.
- G. Jung, S. Hong, Y. Jeong, W. Shin, J.-W. Park, D.H. Kim, Highly selective and low-power carbon monoxide gas sensor based on the chain reaction of oxygen and carbon monoxide to WO<sub>3</sub>, ACS Appl. Mater. Interfaces (2022), https://doi.org/10.1021/acsami.1c25221
- H. Ji, W. Zeng, Y. Xu, Y. Li, Nanosheet-assembled hierarchical WO<sub>3</sub> flower-like nanostructures: hydrothermal synthesis and NH3-sensing properties, Mater. Lett. 250 (2019) 155–158, <a href="https://doi.org/10.1039/c8ra01818a">https://doi.org/10.1039/c8ra01818a</a>.
- 11. H. Jamalabadi, N. Alizadeh, Enhanced low-temperature response of PPy-WO<sub>3</sub> hybrid nanocomposite based gas sensor deposited by electrospinning method for selective and sensitive acetone detection, IEEE Sensor. J. 17 (8) (2017) 2322–2328, https://doi.org/10.1109/jsen.2017.2662716.



ISSN: 2350-0328



**Vol. 12, Special Issue, December 2025 National Conference on Earth, Elements and Energy:** 

Interdisciplinary Perspectives (NC3EIP–2025)

- Govindaraj, T., Mahendran, C., Manikandan, V. S., Archana, J., Shkir, M., & Chandrasekaran, J. (2021). Fabrication of WO<sub>3</sub> nanorods/RGO hybrid nanostructures for enhanced visible-light-driven photocatalytic degradation of Ciprofloxacin and Rhodamine B in an ecosystem. Journal of Alloys and Compounds, 868, Article 159091.
   <a href="https://doi.org/10.1016/j.jallcom.2021.159091">https://doi.org/10.1016/j.jallcom.2021.159091</a>
- Huang, S., Bao, R., Wang, J., Yi, J., Zhang, Z., Liu, L., Han, Y., Li, Z., Min, D., Zhang, W., Ge, Z., & Zhang, X. (2023). Synergistic effect of oxygen vacancy defects and TiO2/WO<sub>3</sub> heterostructures in photocatalytic hydrogen production and dye degradation. Journal of Alloys and Compounds, 961, Article 170945. https://doi.org/10.1016/j.jallcom.2023.170945.
- A. Sharma, S. Arya, B. Singh, P. Tomar, S. Singh, R. Sharma, Sol-gel synthesis of Zn- doped MgO nanoparticles and their applications, Integrated Ferroelectrics Int. J. 205 (1) (2020) 14–25, <a href="https://doi.org/10.1080/10584587.2019.1674993">https://doi.org/10.1080/10584587.2019.1674993</a>.
- 15. K. Ahmed, M. Kumar, others, Optical and structural properties of Mn-doped MgO powders synthesized by sol-gel process, Optik 127 (20) (2016) 8253–8258, https://doi.org/10.1016/j.ijleo.2016.06.055.
- N. Bayal, P. Jeevanandam, Synthesis of TiO2–MgO mixed metal oxide nanoparticles via a sol-gel method and studies on their optical properties, Ceram. Int. 40 (10) (2014) 15463–15477, https://doi.org/10.1016/j.ceramint.2014.06.122.
- S. Abinaya, H.P. Kavitha, Magnesium oxide nanoparticles: effective antilarvicidal and antibacterial agents, ACS Omega 8 (6) (2023) 5225–5234, <a href="https://doi.org/10.1021/acsomega.2c01450">https://doi.org/10.1021/acsomega.2c01450</a>.
- R.S. Ingale, S.G. Shinde, K.A. Khamkar, S.A. Ahire, I.J. Patil, The Al<sup>3+</sup> doped modified ZnO sensor material: fabrication, characterization, and gas sensing characteristics of some environmental pollutant and greenhouse gases, J. Phys. Conf. 2426 (1) (2023, February) 012050, https://doi.org/10.1088/1742-6596/2426/1/012050.