

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 12, Issue 5, May 2025

Copyright to IJARSET www.ijarset.com 23397

Blue-Green Deployment Strategy in Cloud

Native Applications

Prashant Jagannath Khade, Prof. Minakshi Ramteke

P.G. Student, Department of Computer Science, VMIT, Nagpur, India

Assistant Professor, Department of Computer Science, VMIT, Nagpur, India

ABSTRACT: In the rapidly evolving world of cloud-native applications, achieving seamless and reliable deployments

has become a critical requirement for software development teams. Traditional deployment strategies often lead to service

interruptions, degraded user experience, and increased rollback complexity. The Blue-Green Deployment strategy offers

a solution by maintaining two parallel production environments—Blue (current) and Green (new)—allowing for zero-

downtime releases and safe rollback options. This paper presents an in-depth exploration of implementing Blue-Green

Deployment in cloud-native environments using AWS CodeDeploy. It outlines the motivation, deployment architecture,

methodology, and evaluation metrics that validate the strategy’s effectiveness. Our research demonstrates that this

approach minimizes risk, enhances system reliability, and improves release agility, making it a compelling choice for

modern DevOps teams.

I.INTRODUCTION

Cloud-native applications, designed to fully leverage the benefits of the cloud such as elasticity, scalability, and fault-

tolerance, have transformed how organizations build and deliver software. Continuous Integration and Continuous

Deployment (CI/CD) pipelines have become the cornerstone of modern software delivery, enabling rapid feature delivery

and frequent updates. However, deploying changes to live systems remains a complex task prone to errors and service

disruptions.

Blue-Green Deployment offers a resilient approach to this challenge. By maintaining two environments—the Blue

(currently serving production traffic) and the Green (new version of the application)—developers can test updates in the

Green environment before routing live traffic. If issues arise, traffic can easily be redirected back to the Blue environment,

thus avoiding costly downtimes.

This paper investigates the implementation of Blue-Green Deployment for cloud-native applications using Amazon Web

Services (AWS) tools, particularly CodeDeploy. We focus on designing an automated deployment pipeline, evaluating

performance improvements, and comparing this strategy with traditional methods. The research aims to provide

practitioners with a structured and reliable deployment model suited for dynamic cloud environments.

This technology involves two separate environments that host different versions of the service. The primary objective is

to redirect incoming traffic from the environment running the current service version to the environment hosting the new

version. Typically, only one environment is active and handles all production traffic. The active environment is usually

referred to as 'Blue,' while the idle, upcoming production environment is known as 'Green', as shown in Figure 1.

Fig 1. Blue/Green Deployment Framework

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 12, Issue 5, May 2025

Copyright to IJARSET www.ijarset.com 23398

Considering factors such as cost and performance, there are two primary approaches to managing environments:

(a) the Cost-Efficient Strategy and

(b) the Performance-Efficient Strategy.

The Cost-Efficient Strategy focuses on minimizing resource expenses (e.g., virtual machines, networking, storage). In

this approach, the Green environment is set up only when needed, typically during the deployment of a new service

release. Once the new release has been tested and validated in the Green environment, production traffic is redirected to

it, making it the new Blue environment. The original Blue environment is then decommissioned to save on resource costs.

In contrast, the Performance-Efficient Strategy maintains the second environment even after traffic has been switched

to the new deployment. This environment serves as a hot standby backup and is available for future release upgrades.

Here, both the Blue-Green environments remain active, with the Blue environment running the latest stable release and

handling production traffic, while the Green environment, hosting the previous release, remains on standby for failover

purposes. When deploying the next release, the Green environment can be reused as a sandbox for initialization and

validation before it is promoted to Blue and takes over production traffic.

This approach reduces release time by avoiding delays associated with provisioning a new environment.

The primary challenge in Blue/Green deployment lies in the cutover phase, where the service transitions from the Green

environment, following its final testing stage, to the Blue environment to manage live production traffic. Achieving zero

or minimal downtime during maintenance hinges on the efficiency of this Blue/Green switch.

A) NEED OF BLUE/GREEN DEPLOYMENT

The growing need for the high availability, low downtime, and smooth user experiences in contemporary software

systems makes Blue-Green Deployment necessary. Blue-Green Deployment is essential for the following main reasons:

1) Minimized Downtime

2) Risk Mitigation

3) Easy Rollback

4 Improved Testing

5) Continuous Delivery and Agility.

B) OBJECTIVES:

a) To design and implement an automated Blue-Green Deployment Strategy.

b) To integrate this strategy into a CI/CD pipeline using popular tools such as Jenkins, GitLab CI, or GitHub Actions.

c) To evaluate the impact of automation on deployment speed, reliability, and ease of rollback.

d) To develop a monitoring and alerting system that works in tandem with the automated deployment process.

II. SIGNIFICANCE OF THE SYSTEM

The primary focus of the paper is the application of deployment techniques to cloud-native applications in order to deploy

them in a production environment. Section III presents the study of the literature review, Section IV explains the

Methodology, Section V discuss the Study’s Experimental Results and the Section VI addresses the Study’s Future

Research and Conclusion.

III. LITERATURE SURVEY

The goal of the “Automated Blue-Green Deployment in Cloud Native Applications” project is to create and execute a

reliable deployment plan that reduces risk and downtime when updating apps in cloud native settings. To give our project

a solid foundation, this literature review summarizes important ideas and approaches from pertinent studies, industry best

practices, and useful implementation manuals.

Foundational Principles of Continuous Delivery and DevOps

Arpan Mistry and Arudheya Singh Gour initiated the review by exploring the core principles of continuous delivery.

As highlighted by Humble and Farley (2010) [1] in "Continuous Delivery: Reliable Software Releases through Build,

Test, and Deployment Automation," automated software release processes are crucial for achieving rapid and reliable

deployments. Furthermore, Kim et al. [2] (2016) in "The DevOps Handbook: How to Create World-Class Agility,

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 12, Issue 5, May 2025

Copyright to IJARSET www.ijarset.com 23399

Reliability, & Security in Technology Organizations" underscore the importance of fostering collaboration and

automation throughout the software development lifecycle to support seamless deployments.

Containerization and Orchestration in Cloud-Native Environments

Swagata Chakraborty and Kumar Pallav focused on the technological underpinnings of cloud-native applications,

particularly containerization and orchestration. Burns B., J., & Hightower, K. [3] (2019) in "Kubernetes Up & Running:

Dive into the Future of Infrastructure" provide a detailed overview of Kubernetes, the leading platform for managing and

deploying containerized applications. Turnbull, J. [4] (2014) in "The Docker Book: Containerization is the new

virtualization" explains the fundamentals of Docker, which enables the packaging of applications into portable containers.

Together, these technologies are vital for achieving the efficiency and consistency required for blue-green deployments.

Blue-Green Deployment and its Benefits

Vivek Chandola and Sambith Das explored the specific benefits and challenges of blue-green deployments. Chen [5]

(2015) in "Continuous delivery: Huge benefits, but challenges too" discusses the advantages of continuous delivery,

including reduced deployment risk and faster time-to-market. Cloud Foundry's documentation, [7] "Using Blue-Green

Deployment to Reduce Downtime and Risk" (Cloud Foundry, n.d.), provides practical insights into how blue-green

deployments minimize downtime by maintaining two identical production environments and enabling seamless traffic

switching.

Practical Implementation and AWS Specifics

Samyak Jain, Amit Raghuvanshi, and Vivek Kumar contributed by researching practical implementation guides and

cloud-specific examples. Rahul Chauhan's Medium article,[8] "Automating Blue-Green Deployments on AWS EC2

Using CodeDeploy and GitHub Actions" (Chauhan, n.d.), provides a valuable, real-world example of automating blue-

green deployments on AWS. This resource offers insights into using AWS CodeDeploy and GitHub Actions to streamline

the deployment process, highlighting the importance of infrastructure as code and automated workflows. The provided

example is a valuable addition to the theoretical understanding of the process.

IV. METHODOLOGY

In order to reduce downtime during application updates, the Blue-Green Deployment concepts was presented. This

procedure typically entails a manual transition between two identical environments. By automating the Blue-Green

Deployment process. Recent developments in automation and DevOps tools have reduced the need for the human

intervention.

According to the studies, automation can enable more frequent updates, increase reliability, and drastically cut down on

deployment time. Based on the ideas of the continuous delivery, Blue-Green Deployment aims to release software in a

way that minimizes downtime and lowers the possibility of deployment-related problems. Two identical environments,

Blue-Green are maintained as part of the strategy. Usually, Blue is the one that is live and handling production traffic,

while Green is updated with the latest version of the application.

Upon successful testing and validation in the Green testing phase, the system transition occurs, designating Green as the

active environment. Should complications surface, the system is engineered to promptly revert to the Blue environments,

thereby mitigating disruption. The objective of this undertaking is to create and integrated an automated blue-green

deployment strategy for cloud native applications, with primary focus on minimizing application downtime and

associated risks during updates. The strategy employs a systematic and iterative methodology, incorporating design,

implementation, testing, and evaluation stages.

The automated blue-green deployment process’s configuration and practical setup are thoroughly explained in this

chapter. AWS services like Elastic Load Balancer (ELB), CodeDeploy, CodePipeline, and EC2 are used in the

implementation.

To implement Blue-Green Deployment manually using AWS CodeDeploy, the following environment setup was

configured. This setup ensures separation between the currently active (Blue) and upcoming (Green) environments while

maintaining consistent infrastructure and configurations.

Infrastructure Overview

The environment consists of the following AWS components:

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 12, Issue 5, May 2025

Copyright to IJARSET www.ijarset.com 23400

• Two Auto Scaling Groups (ASGs):

• Blue ASG: Hosts the current production version of the application.

• Green ASG: Prepares the new version for deployment and testing.

Elastic Load Balancer (ELB):

• Used to route user traffic.

• Supports dynamic traffic shifting between Blue and Green target groups.

Amazon EC2 Instances:

• Virtual machines used to host the application within each ASG.

• Each EC2 instance runs a CodeDeploy agent.

Amazon CodeDeploy:

• Manages deployments.

• Configured to perform Blue-Green deployments with EC2/On-Premises as the compute platform.

Amazon S3 / GitHub:

Used as the source repository for the application’s deployment package and the AppSpec.yml file.

Step-by-Step Manual Setup Process

Step 1: Create EC2 Launch Templates

• Define a launch template for Blue and Green environments with identical AMI, instance types, and user data

scripts.

• Ensure the CodeDeploy agent is installed during instance bootstrapping.

Step 2: Configure Auto Scaling Groups

• Create two separate ASGs using the defined launch templates.

• Attach the Blue ASG to one ELB target group (e.g., blue-target-group).

• The Green ASG will be attached to another target group (green-target-group) when deployment begins.

Step 3: Setup Elastic Load Balancer (ELB)

• Create an Application Load Balancer.

• Define two target groups: one for Blue and one for Green.

• Initially,route 100% of traffic to the Blue target groups.

Step 4: Register Instances and Install CodeDeploy Agent

• Ensure that all EC2 instances in both ASGs are registered with CodeDeploy.

• Use a bootstrap script or SSH to install the CodeDeploy agent:

sudo yum update -y

sudo yum install ruby -y

cd /home/ec2-usez

wget https://aws-codedeploy-us-east-1.s3.amazonaws.com/latest/install

chmod +x ./install

sudo ./install auto

sudo service codedeploy-agent start

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 12, Issue 5, May 2025

Copyright to IJARSET www.ijarset.com 23401

Step 5: Create a CodeDeploy Application and Deployment Group

• Choose EC2/On-Premises as the compute platform.

• Select deployment type: Blue/Green Deployment.

• Attach both target groups and specify traffic routing configuration (All-at-once, Canary, Linear).

Step 6: Prepare and Upload Deployment Package

Structure includes:

├── appspec.yml

├── scripts/

│ ├── before_install.sh

│ ├── install_dependencies.sh

│ └── start_server.sh

└── src/

 └── application files

Upload the zip file to S3 or connect with GitHub repository.

Step 7: Trigger Deployment

Manually start the deployment from CodeDeploy console or via CLI:

aws deploy create-deployment \

 --application-name BlueGreenApp \

 --deployment-group-name BlueGreenDG \

 --s3-location bucket=my-bucket,key=myapp.zip,bundleType=zip \

 --deployment-config-name CodeDeployDefault.AllAtOnce

Step 8: Monitor and Verify

After CodeDeploy installs the new version on the Green environment:

• Run manual or automated health checks.

• Use ELB traffic shifting to switch to Green target group.

• Rollback by reverting ELB traffic to the Blue group if errors occur.

Key Considerations

• IAM Roles: Ensure EC2 instances and CodeDeploy have the necessary IAM permissions to interact with S3,

EC2, ELB, and ASGs.

• Health Checks: ELB health check path should be configured to ensure only healthy instances receive traffic.

• Rollback Plan: CodeDeploy allows one-click rollback to the previous environment if errors are detected.

V. EXPERIMENTAL RESULTS

Metric Traditional Deployment Blue-Green Deployment

Downtime 45–90 seconds ~0 seconds

Rollback Efficiency Manual (5–10 mins) Instant (via CodeDeploy)

Traffic Switching Time Not applicable ~5–10 seconds

Error Rate During Deploy Moderate (2–5%) None

Deployment Time 12–15 minutes 15–18 minutes

Table1. Results of Blue Green Deployment

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 12, Issue 5, May 2025

Copyright to IJARSET www.ijarset.com 23402

VI. CONCLUSION AND FUTURE WORK

In cloud-native applications Blue-Green Deployment provides a solid and dependable approach to managing application

updates. A smooth transition between outdated and updated application versions is made possible by its ability to maintain

two identical production environments. This guarantees that end users won’t experience too much disruption and offers

a safe backup plan in case of deployment failure.

This investigation has showcased, through the utilization of Amazon Web Services AWS Code Deploy, that the

automation of deployment processes yields several advantages. Primarily, It diminishes the likelihood of the human error

and markedly abridges the duration for update releases.

In addition, the testing and validation phase showed clear improvements in uptime, reliability, and risk mitigation

compared to traditional deployment approaches. These results underline the effectiveness of Blue-Green Deployment as

a strategy for organizations aiming to achieve continuous delivery with confidence.

Overall, the work carried out in this thesis highlights the practical viability of integrating Blue-Green strategies within

modern DevOps pipelines, providing a scalable and automated pathway for rapid and safe application delivery.

While the current implementation of Blue-Green Deployment using AWS CodeDeploy has proven effective for EC2-

based applications, there are multiple avenues for future enhancements and exploration. Key areas for future work

include:

Integration with AWS CodePipeline: Enabling seamless CI/CD workflows by integrating AWS CodeDeploy with

AWS CodePipeline can automate the entire release process, including source control, build, test, and deployment, thereby

improving development velocity and release quality.

Containerized Blue-Green Deployments (ECS/EKS): Migrating to container orchestration platforms such as Amazon

ECS or EKS would enable scalable and efficient deployment of microservices using Blue-Green patterns, better

supporting modern application architectures.

Infrastructure as Code (IaC): Leveraging tools like Terraform or AWS CloudFormation to manage infrastructure as

code would allow consistent and repeatable deployment setups. This also promotes better version control, traceability,

and environment reproducibility.

Advanced Traffic Management: Implementing weighted traffic shifting using Amazon Route 53 or AWS App Mesh

would facilitate progressive exposure of new deployments, allowing gradual rollout and faster rollback in case of errors.

Serverless and Edge Deployments: Extending Blue-Green strategies to AWS Lambda and CloudFront distributions

would support zero-downtime updates for serverless applications and edge services, which are increasingly critical in

low-latency and event-driven workloads.

These areas represent critical advancements that can elevate Blue-Green Deployment strategies, making them more

adaptable to varied infrastructure types, scalable, and resilient for enterprise-grade cloud-native applications.

REFERENCES

[1]. Humble, J., & Farley, D., Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation,

Addison-Wesley, 2010.
[2]. Kim, G., Humble, J., Debois, P., & Willis, J., The DevOps Handbook: How to Create World-Class Agility, Reliability, & Security in

Technology Organizations, IT Revolution Press, 2016.

[3]. Burns, B., Beda, J., & Hightower, K., Kubernetes Up & Running: Dive into the Future of Infrastructure. O'Reilly Media, 2019.
[4]. Turnbull, J., The Docker Book: Containerization is the new virtualization. Turnbull Press, 2014.

[5]. Soni M. End to end automation on cloud with build pipeline: the case for DevOps in insurance industry, continuous integration,

continuous testing, and continuous delivery, In Cloud Computing in Emerging Markets (CCEM), IEEE International Conference on
(pp. 85-89) IEEE, Nov 25, 2015.

[6]. Cloud Foundry, "Using Blue-Green Deployment to Reduce Downtime and Risk". Internet URL:

https://docs.cloudfoundry.org/devguide/deployapps/Blue/Green.html#map-green.
[7]. https://medium.com/@rahulschauhan50/automating-blue-green-deployments-on-aws-ec2-using-codedeploy-and-github-actions-

86a80783c49a.

[8]. https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-groups-create-blue-green.html.
[9]. https://medium.com/@rahulshauryan/how-to-work-with-blue-green-deployment-on-aws-a75650b802a3.

http://www.ijarset.com/

