
   

 
ISSN: 2350-0328 

International Journal of AdvancedResearch in Science, 

Engineering and Technology 

Vol. 12, Issue 5, May 2025 

 

 

Copyright to IJARSET                                              www.ijarset.com                                                              23370 
    

 

 

 

 

Methods for calculating the derivatives of 

active power loss in optimizing the state of 

electric power systems 
 

T.Sh.Gayibov, K.M.Reymov, B.A.Uzakov 

 
Professor (DSc), Department of “Electric Power Stations, Networks and Systems”, Tashkent State Technical 

University, Tashkent, Uzbekistan 

Professor (DSc), department of “Power Energy” Karakalpak State University, Nukus, Uzbekistan 

Associate Professor (PhD), department of “Power Energy” Karakalpak State University, Nukus, Uzbekistan 

 

ABSTRACT: In this paper, in basis of research the effectiveness of methods and algorithms for calculating the 

derivatives of losses in the case of optimal planning of short-term modes of power systems, taking into account losses in 

electrical networks there improving in direction of out coming some problems is carried out. The researches were carried 

out on the example of a complex power system containing 27 nodes, 11 calculated thermal power plants. Evidence-based 

proposals for the rational use of various methods have been developed. 
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I.INTRODUCTION 

 

In the world, scientific research is being conducted aimed at developing and improving effective algorithms for 

planning short-term operating modes of electric power systems, taking into account all influencing limiting factors, to 

ensure optimal operating modes. 

One of the difficult tasks in optimizing short-term states of power systems, taking into account the influence of the 

electrical network on active power, is taking into account losses in electrical networks. Usually, it is carried out on the 

basis of calculating the derivatives of losses in the network by the capacities of power plants [1]. 

[1, 2] an algorithm for calculating the derivatives of losses by the method of numerical differentiation (method of 

infinitesimal increments) is presented. This method allows for the determination of high-precision values of loss 

derivatives based on repeated recalculations of the stabilized state of the electrical system. However, the large volume of 

computational operations performed and, accordingly, the long computational time limit the possibility of using this 

method for short-term planning and, in particular, for the purposes of operational management of modern complex EPS 

states. It is recommended for use in calculating other loss derivatives and assessing the effectiveness of simplified 

optimization methods and algorithms taking them into account. 

According to the developments of the All-Russian Research Institute of Electric Power Engineering, these derivatives 

are calculated using linear formulas [3, 4]. Their coefficients are predetermined based on the calculation of EPS states 

for characteristic time intervals in characteristic days. This method is effective in conditions of insufficient data for 

calculating the stabilized states of the electrical network when optimizing the state of the EPS. 

Unlike the problem of optimal distribution of the load of the power system between stations without taking into 

account losses in the electrical network, in this case, along with determining the total losses in the network, it is also 

necessary to calculate the derivatives of losses by the capacities of all stations participating in the optimization. 

Accounting for losses in electrical networks leads to significant changes in the distribution of the active load of the power 

system between stations. To understand the essence of this issue, it is sufficient to consider an energy system that includes 

thermal power plants (TPPs) participating in optimization. In this case, the mathematical model of the problem is 

described as follows [3, 5-8]: 
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- boundary condition 
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Here Pi, Bi - the active capacity of the i-th TPP and the amount of conditional fuel consumed at this capacity; Pn, π 

- total active load of the power system and total active power losses in its electrical networks.  

Solving the formulated optimization problem (1) - (2) requires the use of methods of linear mathematical 

programming [1-3, 8-11]. Accordingly, for modern large and complex energy systems, their solution is associated with 

certain difficulties. If we take into account that the objective function is discontinuous, and since it is impossible to 

directly use such functions in curvilinear programming methods, which are widely used in practice at the present time, it 

is necessary to represent it with higher-order polynomials, the problem becomes even more complex. 

Losses in the electrical network, along with the active power of stations, which are considered optimized parameters, 

are also a complex function of many other state parameters that change depending on them, in particular, the complex 

voltages of all nodes. Therefore, when solving this problem, the main and important problem is the determination of the 

derivatives of losses by the active power of the stations participating in the optimization. Therefore, the question of the 

rational choice of existing methods in various conditions remains open. In this work, based on the study of existing 

methods for calculating derivatives of losses, they have been improved and scientifically based recommendations for 

their rational use have been developed [1-10]. 

 

II. CALCULATION METHODS 

The classical method for calculating loss derivatives in optimization is the method of small increments from numerical 

differentiation methods. According to it, the derivative of losses by the power of each station is determined as the total 

loss increment δπ, which arises under the influence of the small increment δPi, given to the power of this station, and as 

the ratio of these increments [1, 5]: 

i
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Determining the values of i  using the small increment method requires recalculation at each optimization step, 

equal to the number of stations participating in the optimization of the stabilized state of the electrical network.  

A simple method for calculating the derivatives of losses, widely used in practice today, on the basis of which 

industrial-level programs have been developed, was developed at the All-Russian Research Institute of Electric Power 

Engineering [1, 3] and provides for the use of the following linear form of the loss derivatives: 

0i ij j ik k i
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where ij, ik - constant coefficients of the linear function; Pj, Pk - nodes with a j -th load and a station participating 

in the k-th optimization; i0 is the free term of the linear function. 

The method, which allows for a more accurate calculation of the loss derivatives in electrical networks compared to 

the above method, is based on the use of a formula involving the elements of the intrinsic and mutual conductivity matrix 

Z [1]: 
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 (4) 

Another method for calculating loss derivatives when optimizing the states of electric power systems is based on their 

determination by solving linear algebraic equations. 

An increase in the phase angle i of any i-th node voltage by some small value leads to a corresponding change in the 

total active power loss in the electrical network. This change can be defined as follows: 
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 - derivatives of total losses by the active and reactive powers of node j; 

Pj, Qj  - increase in the active and reactive power of node j due to some increase in the phase angle of the i-th node 

voltage by Δi. 

By dividing both sides of equation (5) by δi   and determining the limit of the resulting equation when the increment of 

the phase angle approaches zero, we obtain the following equation: 
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Similarly, from the formula for the change in total losses in the electrical network under the influence of some increase 

in the voltage modulus by Ui at any node i, based on determining the limit when Ui tends to zero, the following 

relationship can be obtained: 
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Combining equations (6) and (7) and taking into account that i=1, 2,..., N, we obtain the following system of linear 

algebraic equations (SLAE), expressed in matrix form, which can be used to determine the loss derivatives [1, 3]: 
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       (8) 

In the system of equations (8), the elements of the coefficient matrix are practically equal to the derivatives of the 

active and reactive power imbalance functions for the nodes of the electrical network. Therefore, this matrix is a 

transposed form of the Jacobi matrix, which is used to calculate the stabilized state of the electrical network using the 

Newton-Raphson method. 

To eliminate some shortcomings associated with the method based on solving the above system of linear algebraic 

equations, an effective algorithm for calculating the derivatives of losses based on its improvement is proposed. It 

provides for the solution of the resulting system of equations based on decomposition. 

Here, the algorithm for calculating the derivatives of losses is improved based on the decomposition of the matrix of 

the coefficients of the system of linear algebraic equations (8). When using this algorithm, the volume of operations 

performed is significantly reduced, and the accuracy of calculations is increased.  

To calculate the elements of the coefficient matrix in (8), nodal equations written in polar coordinate systems in the 

form of power balances are used.  

In (8), we isolate the equations obtained from the first N equations, i.e., written in the form of active power balances 

for all nodes (except the balancing node), and express the derivatives of losses by the active powers of the nodes: 
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 (9a) 
Considering that the degree of dependence of the reactive power Q of the node on the phase angle δ of the complex 

voltage is weak, we replace the second component in (9a) with a linear vector function: 
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where ρ, ρ0 are the coefficients of the unknown of the linear function and the vectors of the free term. 

The values of the derivatives of losses, determined as a result of solving the system of equations (8), are approximate, 

since when forming it, the partial derivatives of the functions are calculated without taking into account that they are 

complex functions. 

P
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            (11)

. 0.P i i i iP   = +      (12) 

Thus, for calculations according to this algorithm, in the established steady state of the electrical system, the 

approximate values of the . .Р A derivatives of losses by the active power of the nodes are determined by first solving the 

system of equations (11). Then, for the nodes at which the stations participating in the optimization are located, the values 

of these derivatives are corrected taking into account the corrections determined by (12):  

        . . . .P C P A Р  = +       (13) 

III. EXPERIMENTAL PART 

 

The accuracy of the above-mentioned methods and algorithms for calculating the derivatives of losses was determined 

for the operating states of a complex power system with 27 nodes and 11 design TPPs at characteristic time intervals of 

the daily control cycle. Table 1 shows the results of calculating loss derivatives for individual station nodes at certain 

time intervals of the daily control cycle. In this case, the results obtained by the method of small increments can be taken 

as an exact (standard) result.  

 

 

Table 1. Results of calculating the derivatives of losses by various methods. 

Node 

Numbers 

Station 

loads 

Loss derivatives 

Small 

increments 

method 

Linear 

formula 

Based on 

the Z matrix 

Based on 

the 

resolution of 

the SLAE 

Based on the 

decomposition 

of SLAE 

Time interval of the daily control cycle: t=3 

6 560,0 -0,0286 -0,0418 -0,0472 -0,0416 -0,0311 

10 400,0 -0,2817 -0,1549 -0,1962 -0,1970 -0,2697 

16 460,0 -0,1064 -0,0784 -0,1242 -0,0920 -0,1085 

18 433,33 -0,1261 -0,0654 -0,1246 -0,0934 -0,1278 

23 80,0 -0,1318 -0,0687 -0,1286 -0,0968 -0,1297 

Time interval of the daily control cycle: t=10 

6 747,62 -0,0393 -0,0398 -0,0479 -0,0419 -0,0406 

10 594,69 -0,0766 -0,0406 -0,0649 -0,0606 -0,0678 

16 677,69 0,0007 -0,0028 -0,0342 -0,0002 -0,0005 

18 444,38 -0,1387 -0,0756 -0,1333 -0,919 -0,1358 

23 80,0 -0,1418 -0,0773 -0,1354 -0,0928 -0,1393 

Time interval of the daily control cycle: t=18 

6 1120.0 -0.0040 -0,0221 -0,0322 -0,0193 -0,0031 

10 752,0 0,1116 0,1935 0,0447 0,1569 0,1095 

16 712,06 -0,0523 -0,0395 -0,0748 -0,0497 -0,0484 

18 447,65 -0,2886 -0,1548 -0,2080 -0,1921 -0,2779 

23 80,0 -0,2971 -0,1590 -0,2133 -0,1963 -0,2883 
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We are convinced that the use of the proposed algorithm, based on comparing the results obtained by various methods 

of calculating loss derivatives with each other and with the exact results obtained by the method of small increments, has 

higher accuracy compared to the existing methods and algorithms used in practice today. Also, from the results, we see 

that the accuracy of the method based on the use of the linear formula is significantly lower in relatively heavy modes, 

and the accuracy of the methods based on the use of the formula using the elements of the Z matrix and the complete 

solution of the system of linear algebraic equations is approximately the same. 

IV. CONCLUSION 

 

1. Although the use of the linear formula allows for easy and fast determination of loss derivatives, it has the lowest 

accuracy indicator. In this case, the error increases as the operating state of the electrical system deteriorates. Therefore, 

its use is effective only for the purposes of optimal operational management; 

2. The methods based on solving formulas and systems of linear algebraic equations using Z matrix elements have 

approximately the same degree of accuracy. In this case, the use of the formula is associated with certain difficulties in 

calculations. In particular, it is necessary to frequently recalculate the elements of the Z matrix. Also, this formula is 

characterized by its relative complexity; 

3. The proposed method, based on the decomposition of a system of linear algebraic equations, requires relatively fewer 

calculations and has higher accuracy compared to the previous method. Therefore, it is recommended to use this method 

in optimization algorithms based on the calculation of loss derivatives of the states of energy systems. 
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