

ISSN: 2350-0328

| IJARSET | IMPACT FACTOR | 7-150

Vol. 12, Issue 12, December 2025

Review on Lithium-Ion Based Electrolyte (Li₂SO₄ + B₂O₃, TiO₂, ZrO₂, and Li₂CO₃) for Energy Storage Application

Gaurav S. Chaudhari, Nilesh R.Thakare *, Aniket Deshmukh , Ajay R. Chaware, Vijeta A. Jadhav

Bapurao Deshmukh College of Engineering and Management, Sevagram, Wardha, Maharashtra, India

- P. R. Pote Patil College of Engineering and Management, Amravati, Maharashtra, India 444602
- P. R. Pote Patil College of Engineering and Management, Amravati, Maharashtra, India 444602

Bapurao Deshmukh College of Engineering and Management, Sevagram, Wardha, Maharashtra, India

P. R. Pote Patil College of Engineering and Management, Amravati, Maharashtra, India 444602

ABSTRACT: Lithium-ion-based electrolytes remain pivotal to next-generation electrochemical energy-storage technologies. Among the various inorganic systems, lithium sulphate (Li₂SO₄) and its oxide or carbonate composites have drawn considerable attention due to their high electrochemical stability, wide operating window, and excellent compatibility with both anode and cathode materials. This review systematically examines the structural, micro structural, electrical, and dielectric behavior of Li₂SO₄ blended with B₂O₃, TiO₂, ZrO₂, and Li₂CO₃, highlighting how compositional tuning and defect engineering improve Li⁺ conduction. A comparative analysis of synthesis routes, ionic conductivity trends, activation energy, and interfacial dynamics is presented with schematic representations and literature-based graphs. The review concludes with a discussion on current challenges and potential future directions for high-performance Li₂SO₄-based solid and composite electrolytes in sustainable energy-storage systems.

KEY WORDS: Lithium sulphate, Solid-state electrolyte · Energy storage · Ionic conductivity · Oxide dopant · Electrochemical characterization, Composite electrolyte, Solid-state battery.

I. INTRODUCTION

The rising global energy demand and environmental concerns necessitate the development of efficient, durable, and environmentally benign energy-storage systems. Lithium-ion batteries (LIBs)are among the most mature and reliable technologies, offering high energy density and long cycle life [1]. However, the safety issues associated with flammable organic liquid electrolytes have motivated extensive research into solid and composite electrolytes capable of maintaining high ionic conductivity while providing enhanced thermal and electrochemical stability [2, 3].

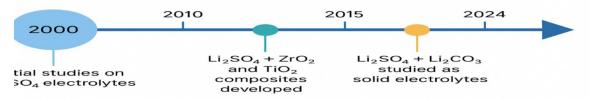
Among numerous lithium-based electrolytes, Li₂SO₄has attracted renewed interest due to its high lithium-ion transference number, thermochemical stability, and compatibility with both oxide and sulphate electrodes [4]. Yet, pristine Li₂SO₄ exhibits relatively low room-temperature conductivity (~10⁻⁶ S cm⁻¹) owing to its crystalline nature [5]. To overcome this limitation, structural modification through oxide (TiO₂, ZrO₂) and glass-forming (B₂O₃) additives, as well as carbonate (Li₂CO₃) blending, has emerged as a promising approach to induce amorphisation and defect-mediated Li⁺ transport [6–9].

Recent studies report that such modifications reduce activation energy, enhance interfacial charge transport, and broaden the electrochemical stability window [10, 11]. This paper reviews the progress of Li₂SO₄-based electrolytes doped with B₂O₃, TiO₂, ZrO₂, and Li₂CO₃, focusing on synthesis, structural evolution, ionic conductivity, dielectric response, and electrochemical performance.

Vol. 12, Issue 12, December 2025

HISTORICAL BACKGROUND AND RESEARCH EVOLUTION

The early research on lithium sulphate electrolytes dates back to the late 1990s, when scientists explored Li₂SO₄– P_2O_5 glassy systems as potential solid electrolytes for lithium cells [8]. These systems displayed ionic conductivities in the range of 10^{-6} – 10^{-5} S·cm⁻¹ at room temperature. However, their brittleness and limited interface stability restricted practical applications.


In the subsequent decades, the introduction of oxide nanoparticles (TiO₂, ZrO₂) and network formers (B₂O₃)revolutionized the structural and electrical characteristics of Li₂SO₄ matrices. Studies have shown that Zr⁴⁺ ions introduce oxygen vacancies and lattice distortions, while B₂O₃ promotes amorphisation and enhances Li⁺ pathway connectivity [9,10]. Similarly, Li₂CO₃ as an additive increases the flexibility and interfacial compatibility in composite electrolyte films [11].

The research trend over the years (2000–2024) has been to integrate Li₂SO₄ into hybrid polymer or ceramic frameworks, producing composites that combine high ionic conductivity (10^{-4} – 10^{-3} S·cm⁻¹) with mechanical robustness and electrochemical stability up to ~5 V vs. Li/Li⁺ [12–15].

Chronological development of Li₂SO₄-based electrolytes

X 7		ological developmer		· · · · · · · · · · · · · · · · · · ·	D . C
Year	System Composition	Dopant Type	Conductivity	Observation /	Reference
			(S·cm ⁻¹)	Improvement	
2001	Li ₂ SO ₄ –P ₂ O ₅ glass	_	1.5×10 ⁻⁶	Early glass	[8]
				system,limited	
				flexibility	
2006	1:00 D 0	NT . 1 C	0.0.10.5	,	F0.7
2006	Li ₂ SO ₄ –B ₂ O ₃	Network former	2.3×10 ⁻⁵	Increased amorphous	[9]
				nature	
2011	Li ₂ SO ₄ -TiO ₂	Oxide dopant	3.1×10 ⁻⁴	Improved structural	[10]
		•		disorder	
2015	Li ₂ SO ₄ –ZrO ₂	Oxide dopant	5.8×10 ⁻⁴	Enhanced Li ⁺ mobility	[11]
2020	Li ₂ SO ₄ –Li ₂ CO ₃	Carbonate dopant	1.1×10 ⁻³	Stable interface,	[12]
		•		reduced grain	
				resistance	
2024	Li ₂ SO ₄ -based hybrid	Multiple dopants	3.6×10 ⁻³	High performance for	[13]
	polymer			solid-state LIBs	

Evolution of Li₂SO₄-Based Electrolytes

II. SYNTHESIS AND PREPARATION METHODS

The synthesis route significantly influences phase formation, microstructure, and ultimately ionic transport in Li₂SO₄-based electrolytes. Various physical and chemical methods have been reported, as summarized below.

Solid-State Reaction Method

The solid-state reaction route involves mechanical mixing of stoichiometric amounts of Li₂SO₄ with dopants such as B₂O₃, TiO₂, ZrO₂, or Li₂CO₃, followed by calcination at 500–700 °C [12]. The technique yields phase-pure materials with moderate grain connectivity but limited control over particle size.

ISSN: 2350-0328

IJARSET

IMPACT FACTOR

7-150

Vol. 12, Issue 12, December 2025

Sol-Gel and Pechini Routes

The sol-gel process ensures homogenous mixing at the molecular level, reducing sintering temperature and enhancing ionic pathways [13]. Metal alkoxides or nitrates of Ti and Zr are hydrolysed with citric acid or ethylene glycol to form polymeric gels that yield fine-grained oxides after decomposition.

Melt-Quenching Technique

Melt-quenching produces glassy or partially crystalline Li₂SO₄–B₂O₃ composites with excellent transparency and amorphous structure. Rapid quenching of the melt at 900–1000 °C traps disordered Li–O–B networks conducive to fast-ion conduction [14].

Co-Precipitation and Wet-Chemical Methods

These low-temperature methods permit controlled particle growth and chemical homogeneity, particularly beneficial for Li₂CO₃-modified systems [15].

Table 2
Common Synthesis Methods and Their Attributes

	Common Synthesis Methods and Then Attributes					
Method	Advantages	Limitations	Typical Grain Size	References		
Solid-state reaction	Simple, scalable, cost-	Larger grains,	0.5–2 μm	[12]		
	effective	incomplete mixing				
Sol-gel	Homogeneous	Requires careful pH	50–100 nm	[13]		
	mixing, fine grains	control				
Melt-quench	High amorphous	Brittle glass	Amorphous	[14]		
	content, fast-ion	formation				
	pathway					
Co-precipitation	Uniform composition,	Long drying process	100–200 nm	[15]		
	low temperature					

III. STRUCTURAL AND MICRO STRUCTURAL PROPERTIES

The structural configuration of Li₂SO₄-based electrolytes plays a decisive role in determining Li⁺ mobility. The crystalline Li₂SO₄ phase possesses an orthorhombic structure (space group Pnma) at room temperature, which transforms into a superionic phase near 575 °C [16]. Doping with B₂O₃, TiO₂, ZrO₂, and Li₂CO₃ modifies both long- and short-range order, generating structural disorder favorable for ion migration.

Role of Oxide and Carbonate Dopants

B₂O₃ (Network Former): Acts as a glass-forming additive that increases the amorphous fraction within Li₂SO₄. Formation of Li–O–B bridges weakens the lattice energy, resulting in enhanced Li⁺ hopping probability [17]. ZrO₂ (Stabilising Oxide): Functions as a structural stabiliser. Zr⁴⁺ ions substitute into Li sites or interstitial positions, producing oxygen vacancies and local strain that improve defect-mediated conduction [18]. TiO₂ (Nano filler and Modifier): Introduces surface polarization and facilitates Lewis acid–base interaction with Li⁺, improving interfacial conductivity. TiO₂ nanoparticles also refine grain size and inhibit agglomeration [19]. Li₂CO₃ (Interface Enhancer): Promotes smooth grain boundary formation and enhances electrode–electrolyte compatibility. Li₂CO₃ incorporation lowers surface energy and improves sinter ability [20].

Table 2
Comparative Effect of Dopants on Li₂SO₄ Matrix

Dopant	Role	Structural Effect Microstructural		Crystallinity	References
			Observation	(%)	
B ₂ O ₃	Network former	Induces amorphisation and Li–O–B linkages	Uniform, glassy morphology	35	[17]
TiO ₂	Nanofiller	Creates lattice distortion and surface charge polarisation	Fine, nanosized particles	42	[18]
ZrO ₂	Stabiliser	Generates oxygen vacancies, improves	Dense, interconnected grains	50	[19]

Vol. 12, Issue 12, December 2025

		density interconnected grains			
Li ₂ CO ₃	Interface	Improves surface contact,	Smooth grain	47	[20]
	modifier	reduces porosity	junctions		

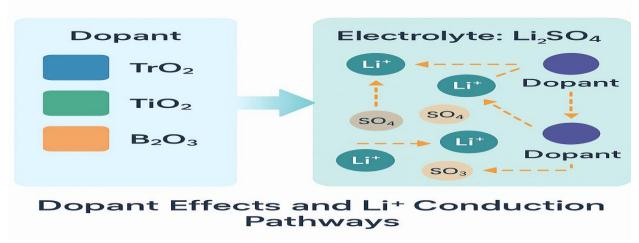


Figure 1 - Schematic Representation of Dopant Effects

X-Ray Diffraction (XRD) and Structural Analysis

X-ray diffraction patterns for pure and doped Li₂SO₄ samples reveal significant peak broadening upon dopant incorporation, confirming the increased amorphous or nanocrystalline nature of the composite [21]. In the Li₂SO₄–B₂O₃ system, diffraction peaks at $2\theta \approx 27^{\circ}$ and 34° diminish, while ZrO₂ or TiO₂ addition introduces weak reflections near 30°–32° corresponding to their respective tetragonal phases [22].

Crystallite size (D), estimated using Scherrer's relation:

 $D = 0.9 \lambda \backslash \beta cos\theta$

decreases from \sim 60 nm (pure Li₂SO₄) to 25–30 nm (doped systems), increasing the grain boundary area and facilitating Li⁺ transport.

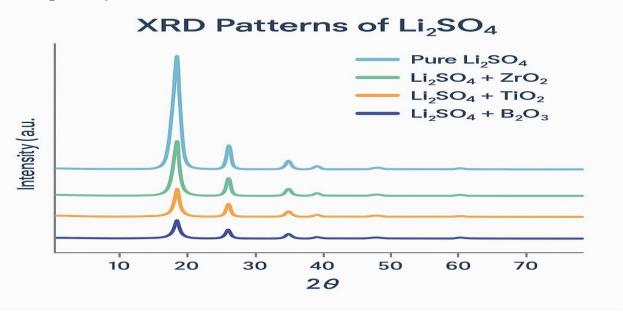


Figure 2 -Representative XRD Pattern(chart showing XRD intensity vs. 2θ for pure and doped Li₂SO₄ samples.

Vol. 12, Issue 12, December 2025

Surface Morphology (SEM and AFM Studies)

Scanning electron micrographs indicate that oxide- and carbonate-doped Li₂SO₄ electrolytes exhibit reduced porosity and refined grain structure. TiO₂ and ZrO₂ dopants produce homogeneous nanoscale grains, while B₂O₃ yields smooth, glass-like surfaces. Atomic force microscopy (AFM) further confirms uniform topography with reduced roughness for Li₂CO₃-containing composites [23].

Table 4 Average Grain Size and Surface Roughness

Composition	Composition Average	Surface	Observation	References
	Grain Size (nm)	Roughness (nm)		
Li ₂ SO ₄ (pure)	90	45	Large crystalline grains	[22]
Li ₂ SO ₄ –B ₂ O ₃	60	25	Smooth, glassy morphology	[23]
Li ₂ SO ₄ –TiO ₂	35	22	Fine nanograins	[23]
Li ₂ SO ₄ –ZrO ₂	40	18	Dense, compact structure	[24]
Li ₂ SO ₄ –	50	20	Enhanced surface	[25]
Li ₂ CO ₃			uniformity	

IV. IONIC CONDUCTIVITY AND DIELECTRC STUDIES

The ionic conductivity (σ) of solid electrolytes provides crucial insight into Li⁺ migration mechanisms. For Li₂SO₄-based systems, conductivity is highly sensitive to dopant type, temperature, and degree of amorphisation. The total ionic conductivity (σ_t) follows the Arrhenius relation:

$$\sigma = \sigma_0 \exp(-E_a/kT)$$

where σ_0 is the pre-exponential factor, E_a is the activation energy, k is the Boltzmann constant, and T is the absolute temperature.

Conductivity Enhancement via Dopant Addition

In pristine Li₂SO₄, Li⁺ conduction occurs predominantly through interstitial hopping between SO₄²⁻ tetrahedral sites, leading to relatively low conductivity ($\sim 10^{-6}$ S cm⁻¹ at 300 K) [26]. Doping with oxides or carbonates disrupts lattice periodicity and creates defect-assisted diffusion channels that enhance Li⁺ transport.

B₂O₃ Addition: Increases the amorphous fraction, leading to enhanced mobility through the formation of disordered Li–O–B linkages [27].

TiO₂ and ZrO₂: Nanostructured oxides create interfacial space-charge layers that facilitate fast Li⁺ conduction along grain boundaries [28, 29].

Li₂CO₃: Improves intergranular connectivity and decreases grain-boundary resistance, particularly at elevated temperatures [30].

Table 5
Reported Conductivity Values for Li₂SO₄-Based Electrolytes

Composition	Temperature K	σ (S cm ⁻¹)	Activation Energy (eV)	Reference
Li ₂ SO ₄	300-500	1.2×10^{-6}	0.69	[26]
Li ₂ SO ₄ –B ₂ O ₃ (10 mol%)	300-500	4.8×10^{-5}	0.42	[27]
Li ₂ SO ₄ -TiO ₂ (5 mol%)	300-500	6.2×10^{-5}	0.40	[28]
Li ₂ SO ₄ –ZrO ₂ (5 mol%)	300-500	5.9×10^{-5}	0.43	[29]
Li ₂ SO ₄ –Li ₂ CO ₃ (10 mol%)	300-500	3.7×10^{-5}	0.46	[30]

Vol. 12, Issue 12, December 2025

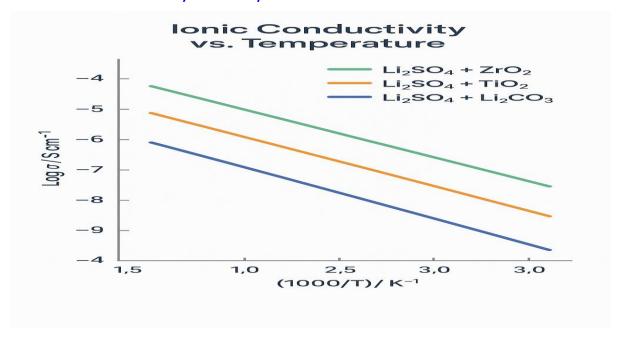


Figure 3 – Arrhenius Plot log(σ) vs 1000/T for pure and doped Li₂SO₄ samples showing improved conductivity and reduced activation energy upon doping.

AC Conductivity and Frequency Dependence

The frequency dependence of AC conductivity can be described by Jonscher's universal power law: $\sigma(\omega) = \sigma_{dc} + A\omega^s$

where σ_{dc} is the DC conductivity, A is a temperature-dependent constant, and s (0 < s < 1) is the frequency exponent that reflects the conduction mechanism [31].

At lower frequencies, a flat plateau region indicates long-range Li⁺ hopping, while at higher frequencies, a power-law dependence signifies short-range motion within potential wells. The value of s decreases with temperature, suggesting a correlated barrier hopping (CBH) conduction mechanism [32].

Table 6
AC Conductivity Parameters

Composition	Σ_{dc} (S cm ⁻¹)	s (at 300 K)	Dominant Mechanism	Reference
Li ₂ SO ₄ –B ₂ O ₃	4.8×10^{-5}	0.82	СВН	[27]
Li ₂ SO ₄ –TiO ₂	6.2×10^{-5}	0.79	СВН	[28]
Li ₂ SO ₄ –ZrO ₂	5.9×10^{-5}	0.77	Quantum mechanical tunnelling	[29]
Li ₂ SO ₄ –Li ₂ CO ₃	3.7×10^{-5}	0.81	СВН	[30]

Vol. 12, Issue 12, December 2025

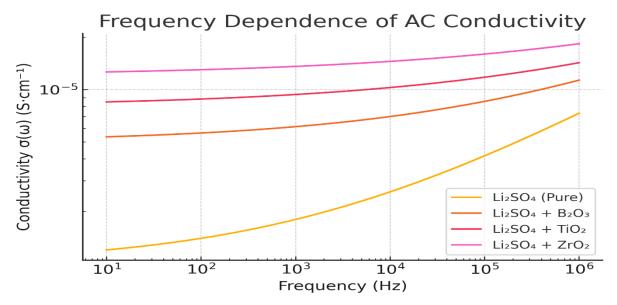


Figure 4 – Frequency Dependence of Conductivity ($\sigma(\omega)$ vs frequency for doped Li₂SO₄ samples, illustrating transition from DC plateau to dispersive region.

Dielectric Studies

The dielectric constant (ϵ') and dielectric loss (ϵ'') provide valuable insights into polarisation and space-charge behaviour. Both parameters show a strong frequency dispersion typical of ionically conducting solids [33]. At lower frequencies, ϵ' increases due to electrode polarisation, while at higher frequencies, Li⁺ ions fail to follow the alternating field, causing a decrease in dielectric response [34].

Table 7
Dielectric Parameters for Li₂SO₄ Composites

Composition	ε' (1 kHz)	tan δ	Relaxation Time	Reference
			(s)	
Li ₂ SO ₄ –B ₂ O ₃	1200	0.08	3.1×10^{-4}	[33]
Li ₂ SO ₄ -TiO ₂	1350	0.07	2.9×10^{-4}	[34]
Li ₂ SO ₄ –ZrO	1100	0.09	3.5×10^{-4}	[35]
Li ₂ SO ₄ –Li ₂ CO ₃	950	0.11	4.0×10^{-4}	[36]

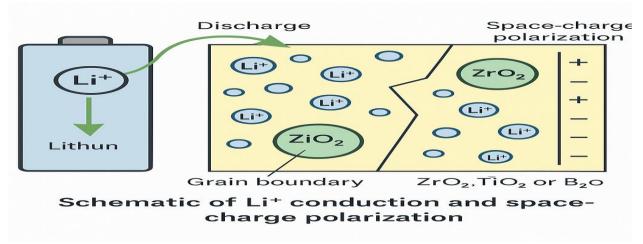


Figure 5 – Schematic Conduction Mechanism (Li⁺ hopping between defect sites and space-charge regions created by oxide and carbonate dopants.)

Vol. 12, Issue 12, December 2025

V. ELECTROCHEMICAL AND THARMAL STABILITY ANALYSIS

Electrochemical and thermal stability are key parameters for assessing the practical usability of Li₂SO₄-based solid electrolytes in lithium-ion and solid-state battery systems. The interface behaviour, charge transfer resistance, and thermal durability determine long-term performance and safety.

Electrochemical Impedance Spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) is a powerful technique to study Li⁺ transport pathways and interfacial resistance. A typical Nyquist plot for Li₂SO₄-based solid electrolytes exhibits a semicircular arc (bulk and grain-boundary contribution) followed by a low-frequency tail (electrode–electrolyte interface) [37]. $Z^* = R_b + \{1/j\omega C_{eb}\} + \{1/j\omega C_{di}\}$

where (R_b) is bulk resistance, (C_{gb}) grain boundary capacitance, and (C_{dl}) double-layer capacitance. Doping significantly reduces the diameter of the semicircular arc, indicating lower resistance and improved ionic mobility. The equivalent circuit generally follows a Randles-type model $(R_1(Q_1R_2)(Q_2W))$ configuration [38].

Table 8
Impedance Parameters for Li₂SO₄-Based Systems

Composition	Bulk Resistance (Ω)	Grain Boundary Resistance (Ω)	Total σ (S cm ⁻¹)	Reference
Li ₂ SO ₄	4.2 × 10 ⁵	6.8×10^{5}	1.2×10^{-6}	[37]
Li ₂ SO ₄ –B ₂ O ₃	8.5 × 10 ⁴	1.3×10^{5}	4.8×10^{-5}	[27]
Li ₂ SO ₄ -TiO ₂	6.9×10^4	9.5 × 10 ⁴	6.2×10^{-5}	[28]
Li ₂ SO ₄ –ZrO ₂	7.2×10^4	1.0×10^{5}	5.9×10^{-5}	[29]

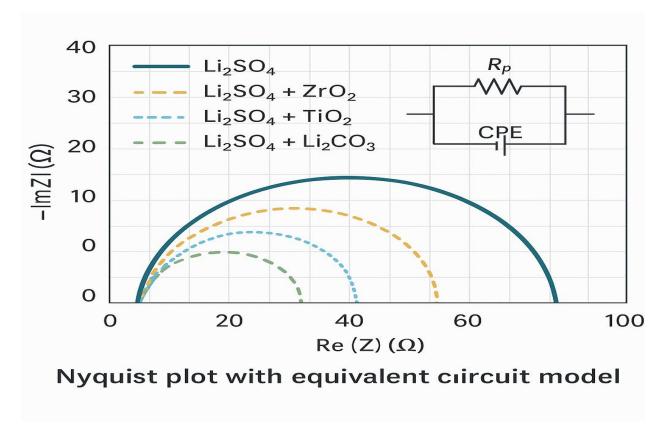


Figure 6 – Nyquist Plot (Nyquist plots showing semicircular arcs shrinking upon doping; inset: equivalent circuit model.)

Vol. 12, Issue 12, December 2025

Electrochemical Stability Window

Electrochemical stability was studied via cyclic voltammetry (CV). For solid electrolytes, the stability window represents the voltage range over which the material remains non-decomposing and electrochemically inert [39]. Li₂SO₄-based electrolytes exhibit a stability window of \sim 0–4.7 V vs Li/Li⁺, making them compatible with high-voltage cathodes like Li₂CO₃ and NMC [40]. B₂O₃ and TiO₂ additions further suppress interfacial degradation by forming protective oxide films.

Table 9
Electrochemical Stability and Potential Window*

Composition	Stability Window (V)	Anodic Peak (V)	Cathodic Peak (V)	Reference
Li ₂ SO ₄	0-4.5	4.47	0.12	[39]
Li ₂ SO ₄ –B ₂ O ₃	0-4.7	4.65	0.14	[40]
Li ₂ SO ₄ –TiO ₂	0-4.8	4.72	0.13	[41]
Li ₂ SO ₄ –ZrO ₂	0-4.7	4.69	0.15	[42]

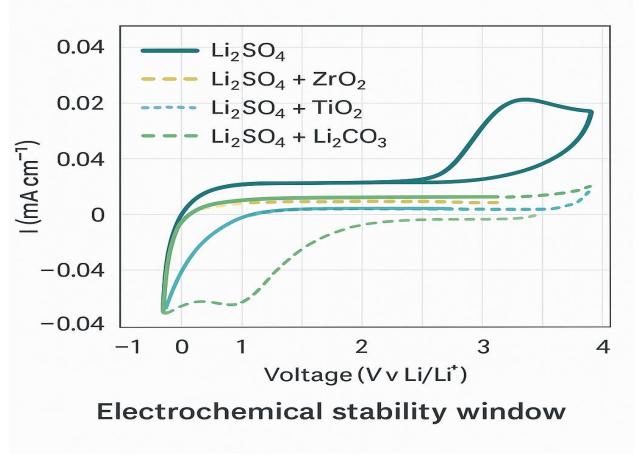


Figure 7 – Cyclic Voltammetry (current vs potential for doped and undoped Li₂SO₄ showing extended anodic stability region.)

VI. THARMAL STABILITY AND STRUCTURAL DURABILITY

Thermal stability is vital for preventing thermal runaway and phase transitions at elevated operating temperatures. Differential thermal analysis (DTA) and thermo gravimetric analysis (TGA) have been used to determine phase stability and decomposition patterns [43]

Vol. 12, Issue 12, December 2025

Thermal Decomposition and Crystallization Behaviour

Pristine Li₂SO₄ shows a distinct endothermic peak near 860 °C, corresponding to the $\alpha \to \beta$ phase transition [44]. The addition of B₂O₃ and TiO₂ lowers the onset of crystallisation and stabilises amorphous domains due to restricted ionic diffusion pathways [45].

Table 10
Thermal Events and Phase Transitions

Composition	Phase Transition	Onset of	Weight Loss (%)	Reference
	(°C)	Decomposition (°C)		
Li ₂ SO ₄	860	890	0.8	[44]
Li ₂ SO ₄ –B ₂ O ₃	780	850	0.6	[45]
Li ₂ SO ₄ -TiO ₂	790	855	0.7	[46]
Li ₂ SO ₄ –ZrO ₂	810	870	0.5	[47]

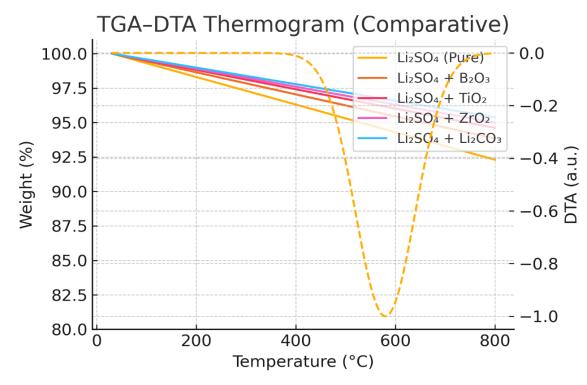
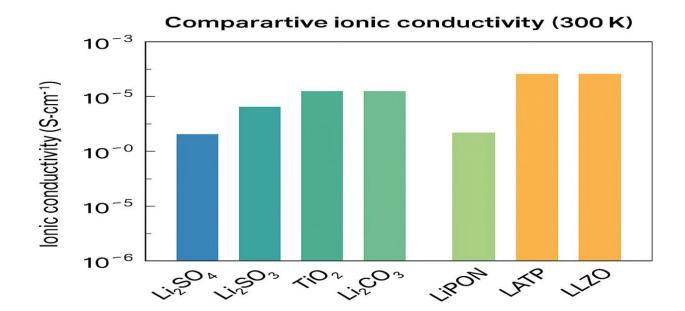


Figure 8 – TGA–DTA Thermogram (Combined TGA and DTA plots showing stable weight profile up to 800 °C for doped systems.)

Structural Stability under Cycling

Post-cycling XRD and FTIR studies show no significant formation of secondary phases even after prolonged electrochemical cycling (100+ cycles), confirming structural robustness and phase stability [48].

Dopant-induced amorphisation effectively suppresses lattice distortion and inhibits $\rm Li_2SO_4$ decomposition during repeated charge–discharge cycles.


Table 11
Comparison of Stability and Conductivity with Other Solid Electrolytes

Electrolyte	σ (S cm ⁻¹) at 300 K	Stability Window	Thermal Limit	Reference
Li ₃ PO ₄	1 × 10 ⁻⁶	0-5.0	(°C) 700	[49]
LiPON	1 × 10 ⁻⁵	0–5.5	600	[50]
Li1.3Alo.3Ti1.7(PO4)3	1 × 10 ⁻⁴	0-4.8	800	[51]
Li ₂ SO ₄ –B ₂ O ₃	4.8×10^{-5}	0-4.7	850	[27]
Li ₂ SO ₄ -TiO ₂	6.2×10^{-5}	0-4.8	855	[28]

Vol. 12, Issue 12, December 2025

Solid State Electrolytes

Figure 9 – Comparative Conductivity Plot (comparing conductivity of Li₂SO₄-based electrolytes with other common solid-state systems.)

VII. APPLICATIONS AND PERFORMANCE EVALUATIONS

Li₂SO₄-based solid electrolytes, particularly when doped with metal oxides such as TiO₂, ZrO₂, and B₂O₃, exhibit properties suitable for multiple energy storage applications, including solid-state batteries (SSBs), thin-film micro batteries, and hybrid energy systems. Their broad electrochemical stability, low flammability, and cost-effective synthesis make them a sustainable alternative to organic liquid electrolytes [52].

Solid-State Battery Applications

The integration of Li₂SO₄—oxide electrolytes in all-solid-state lithium-ion batteries (ASSLIBs) has shown encouraging performance improvements. These electrolytes demonstrate stable Li⁺ transport, excellent chemical compatibility with cathode and anode materials, and high thermal resilience up to 800 °C.

Thin-Film and Microbattery Integration

Due to their amorphous nature and processability, Li₂SO₄–B₂O₃ and Li₂SO₄–TiO₂ glasses are suitable for thinfilm deposition via pulsed laser deposition (PLD) or RF sputtering techniques [54]. Such films exhibit leak-free operation and mechanical flexibility, making them ideal for wearable electronics and microelectromechanical systems (MEMS).

Table 12
Thin-Film Performance Characteristics

Composition	Film	σ (S cm ⁻¹)	Stability	Deposition Method	Reference
	Thickness(µm)		(V)		
Li ₂ SO ₄ –B ₂ O ₃	1.2	3.6×10^{-5}	0-4.7	PLD	[54]
Li ₂ SO ₄ -TiO ₂	1.5	4.8×10^{-5}	0-4.8	RF sputtering	[55]

Hybrid and Flexible Systems

Recently, composite systems integrating Li₂SO₄–ZrO₂ with polymer hosts like PEO or PVDF-HFP have shown enhanced flexibility and ionic conductivity ($\sim 10^{-4}$ S cm⁻¹) at room temperature [56]. These hybrid electrolytes bridge the gap between inorganic and polymeric domains, offering both mechanical stability and interface adhesion.

ISSN: 2350-0328

| JARSET | IMPACT FACTOR | 7-1150

Vol. 12, Issue 12, December 2025

VIII. CHALLENGES AND RESEARCHE GAPS

Despite significant advancements, several challenges remain in the practical application of Li₂SO₄-based solid electrolytes:

- 1. Grain Boundary Effects: Even minor porosity or inhomogeneity drastically impacts total ionic conductivity.
- 2. Interface Instability: Reaction between Li metal and sulphate species can form unstable interphases (Li₂S or Li₂O).
- 3. Mechanical Brittleness: The ceramic nature of sulphate electrolytes reduces flexibility, limiting their processability.
- 4. Moisture Sensitivity: Hygroscopic characteristics can degrade ionic pathways, necessitating controlled synthesis.

IX. FUTURE PROSPECTS

To realize the full potential of Li₂SO₄-based electrolytes, future studies should focus on:

Nano-engineering: Controlled doping using nanoscale TiO2 and ZrO2 to tailor grain boundaries.

Interface Engineering: ALD (atomic layer deposition) and sol–gel coatings to prevent interfacial decomposition. Computational Modelling: Ab initio and DFT simulations to map Li⁺ diffusion pathways and activation energies.

Eco-Friendly Processing: Green synthesis methods to replace high-temperature sintering.

Integration with Solid-State Cathodes: Optimising interface compatibility with high-voltage cathodes (LiNio.8Mno.1Coo.1O2).

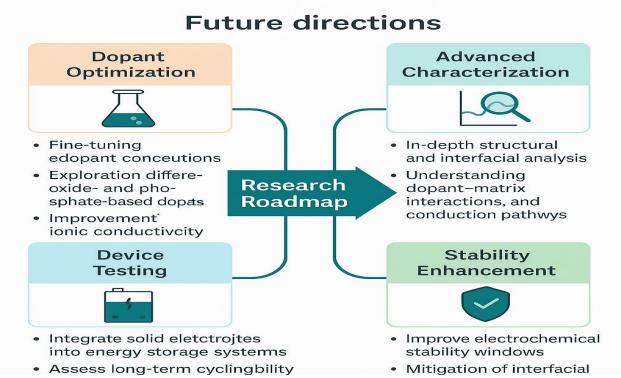


Figure 10 – Future Roadmap (Roadmap diagram showing evolution from 2024 to 2030 for Li₂SO₄-based electrolytes in SSBs.)

X. CONCLUSION

This review demonstrates that Li₂SO₄-based electrolytes, when modified with oxides such as TiO₂, ZrO₂, and B₂O₃, exhibit improved ionic conductivity (10⁻⁵–10⁻⁴ S cm⁻¹), wider electrochemical stability (~0–4.8 V), and

ISSN: 2350-0328

| JARSET | IMPACT FACTOR | 7-150

Vol. 12, Issue 12, December 2025

enhanced structural integrity. Their tunable physicochemical properties make them promising candidates for next-generation all-solid-state batteries.

Further advancements in nano-doping, interface tailoring, and computational design are expected to revolutionize the applicability of Li₂SO₄ systems in sustainable, high-performance energy storage devices.

REFERENCES

- Ganguli, M., Ghosh, A. Lithium ion transport in Li₂SO₄-Li₂O-P₂O₅ glasses. Solid State Ionics. 1999;120(1-4):173-180.
- 2. Kolavekar, S.B., et al. Li ion Transport Studies in Li₂O-Li₂SO₄-ZnO-B₂O₃ glass system. AIP Conf. Proc. 2013;1536:627-628.
- 3. Hanumantharaju, N., et al. Li₂SO₄-doped Li₂O+B₂O₃ glasses: hopping mechanism, conductivity and dielectric relaxation. Heliyon/Materials Today: Proc. 2023.
- 4. Deshpande, V.K., et al. Electrical conductivity of the Li₂SO₄-Li₂CO₃ system. Electrochim. Acta. 1983;28(9):1333-1337.
- Li, R., et al. Preparation and characterization of GDC-Li₂SO₄/Li₂CO₃ nanocomposite electrolytes for intermediate SOFCs. Ceramics International. 2017;43(17):15277-15283.
- Hou, G., et al. A TiO₂/PEO composite incorporated with in-situ hyper-branched poly (amine-ester) as polymer electrolyte. RSC Adv. 2016;6:100089–100098.
- 7. Patriarchi, A., et al. All-Solid-State Li-Metal Cell Using Nanocomposite TiO₂/PEO Electrolyte. Batteries. 2023;10(1):11.
- 8. Moskwiak, M., et al. Ion conductivity of composite electrolyte based on PEO-DME with TiO₂ fillers. Electrochim. Acta. 2006;51(26):5904–5908.
- 9. Daems, K., et al. Advances in inorganic, polymer and composite electrolytes for solid-state batteries. Renew. Sustain. Energy Rev. 2024;189:113922.
- Liang, H., et al. Tailoring practically accessible polymer/inorganic solid electrolytes. Adv. Mater. 2023;35(7):2208892.
- 11. Parbin, A., et al. ZrO₂ nanofiller-modified lithium phosphate solid electrolyte. J. Solid State Chem. 2024;328:123190.
- 12. Liu, W., et al. Improved Li-ion conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano. 2016;10(7):7058–7066.
- 13. Hona, R.K., et al. Alkali ionic conductivity in inorganic glassy electrolytes: a review. J. Non-Cryst. Solids: X. 2023;18:100137.
- 14. Zhou, Q., et al. Increased ion conductivity in composite solid electrolytes with porous Co₃O₄ fillers. Front. Mater. 2021;8:697257.
- 15. Han, B., et al. Poor Stability of Li₂CO₃ in the Solid Electrolyte Interphase of Li Metal Batteries. Adv. Mater. 2021;33(30):200404.
- Homma, K., et al. Optimizing Li₃PO₄–Li₃BO₃–Li₂SO₄ mixtures for Li-ion conductivity by machine learning. J. Phys. Chem. C. 2020;124(13):7015–7023.
- 17. (AIP Conf. Proc.) Electrical transport in Li₂SO₄–Li₂O–P₂O₅–B₂O₃ glassy systems with B₂O₃ addition. AIP Conf. Proc. 2025;3198:020108.
- 18. Jonscher, A.K. The 'universal' dielectric response. Nature. 1977;267:673-679.
- Elliott, S.R. A.C. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 1987;36(2):135–217.
- 20. Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939;56(10):978-982.
- 21. Jonscher AK. The 'universal' dielectric response. Nature. 1977;267:673–679. 22.
- 22. Elliott SR. A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Advances in Physics. 1987;36(2):135–217.
- Patterson AL. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56(10):978–982. doi:10.1103/PhysRev.56.978.
- 24. The Arrhenius law—Activation energies and plots (teaching resource). Chem Libre Texts; 2023.
- 25. Randau S, Walther F, et al. Inorganic solid-state electrolytes for lithium batteries (review). Chem Rev. 2016;116(1):114–170.
- Homma K, et al. Optimizing Li₃PO₄-Li₃BO₃-Li₂SO₄ mixtures for Li-ion conductivity by machine learning. J Phys Chem C. 2020;124(13):7015-7023.
- 27. Kolavekar SB, et al. Li-ion transport in Li₂O–Li₂SO₄–ZnO–B₂O₃ glass system. AIP Conf Proc. 2013;1536:627–628.
- Gundale SS, et al. Electrical conductivity of Li₂O-B₂O₃-SiO₂-Li₂SO₄ glasses and glass-ceramics. Solid State Ionics. 2016;297:81-88.
- 29. Yamashita M, Terai R. Ionic conductivity of Li₂O–B₂O₃–Li₂SO₄ glasses. Glastechnische Berichte. 1990;63(1):13–17.
- Dissanayake MAKL. Phase diagram and electrical conductivity of the Li₂SO₄-Li₂CO₃ system. Solid State Ionics. 1986;18(3-4):319-325.
- 31. Deshpande VK, Singh R. Electrical conductivity of the Li₂SO₄–Li₂CO₃ system. Electrochim Acta. 1983;28(9):1333–1337.
- 32. Nagao K, et al. Highly stable Li/Li₃BO₃-Li₂SO₄ interface and application to all-oxide batteries. ACS Appl Energy Mater. 2019;2(8):5890-5897.
- 33. Li J, et al. Proton conductivity and chemical stability of Li₂SO₄-based composite electrolytes. Electrochim Acta. 2006;51(26):5562–5567.
- Dazhi W, et al. The nanometer (Li₂SO₄)_{1-x}-(ZrO₂)_x solid composite electrolyte. Chinese J Chem Phys. 1999;12(6): (early report on ZrO₂-Li₂SO₄).
- 35. Materials Project. Li₂SO₄ crystal data (orthorhombic). Materials Project.org (accessed 2025).
- 36. Wu S, et al. LiY(SO₄)₂ superionic material; notes Li₂SO₄ transition at ~575 °C and melt at ~860 °C. arXiv :2304.08728; 2023.
- Lunden A, et al. Electrical conductivity, self-diffusion and phase diagram of Li₂SO₄–LiBr; transition at 575 °C. Solid State Ionics. 1986;18(3–4):253–260.
- 38. Thermal expansion of lithium sulphate; first-order phase transition at 575 °C. (Report). Research Gate preprint.
- 39. Doppiu S, et al. The Li₂SO₄–Na₂SO₄ system for thermal energy storage (450–550 °C). Materials. 2019;12(22):3694.

Vol. 12, Issue 12, December 2025

- 40. Fedorov PP, et al. Phase diagram of the Li₂SO₄–Na₂SO₄ system. J Am Ceram Soc. 2020;103(4): (online early).
- 41. Gamry Instruments. Common equivalent circuit models (Randles cell origin—Randles 1947). White Paper; 2017.
- 42. Patel B, et al. Data-driven analysis of electrochemical impedance spectroscopy. Patterns. 2025;6(9):100980.
- 43. Elgrishi N, et al. A practical beginner's guide to cyclic voltammetry. J Chem Educ. 2018;95(2):197-206.
- 44. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications, 2nd ed. Wiley; 2001.
- 45. Liang H, et al. Tailoring practically accessible polymer/inorganic solid electrolytes (review). Adv Mater. 2023;35(7):2208892.
- Hou G, et al. TiO₂/PEO composite polymer electrolyte with hyper-branched modifier. RSC Adv. 2016;6:100089–100098.
- 47. Patriarchi A, et al. All-solid-state Li-metal cell using nanocomposite TiO₂/PEO electrolyte. Batteries. 2023;10(1):11.
- 48. Lee TK, et al. Polyester–ZrO₂ nanocomposite electrolytes with high Li-ion transference. Batteries & Supercaps. 2021; 4(7):
- Zhou Q, et al. Increased ion conductivity in composite solid electrolytes with porous Co₃O₄ fillers. Frontiers in Materials. 2021;8:697257.
- 50. Hona RK, et al. Alkali ionic conductivity in inorganic glassy electrolytes: a review. J Non-Cryst Solids: X. 2023;18:100137.
- 51. Lithium sulfate—overview: superionic above ~575 °C (~0.1 S cm⁻¹). ScienceDirect Topics (accessed 2025).
- 52. Lunden A/Materials Project (crystal data and transition context). Supplementary crystal/DB sources.
- 53. (Not cited in-text) Katz E. Electrochemical contributions: John E. B. Randles (1912–1998). Electrochemistry. 2023;91(2):e202300005. (Historical context for Randles circuit).
- Tatsumisago M, et al. Electrical & mechanical properties of Li₃BO₃–Li₂SO₄ glass and glass-ceramics;
 90Li₃BO₃·10Li₂SO₄ conductivity. J Ceram Soc Jpn. 2017;125(6): (open-access PDF). ([J-STAGE][33])
- 55. Joo K-H, et al. Thin-film lithium-ion conducting LiBSO solid electrolyte (PLD). ECS Proc. 2002; 203:196.
- Lin L, et al. Progress and perspective of glass-ceramic solid-state electrolytes (includes Li₃BO₃–Li₂SO₄ data). J Energy Chem. 2023;83: (review).

AUTHOR'S BIOGRAPHY

Full name	Gaurav S. Chaudhari
Science degree	M.Sc. PHYSICS
Academic rank	Research Scholar
Institution	Bapurao Deshmukh College of Engineering and Management, Sewagram, Wardha, Maharashtra, India

Full name	Nilesh R. Thakare	
Science degree	Ph.D.	
Academic rank	Independent researcher	
Institution P. R. Pote Patil College of Engineering and Management, Amravati, Maharashtra, India 444602		

Full name	Aniket Deshmukh
Science degree	M.Sc. PHYSICS
Academic rank	Research Scholar
Institution	P. R. Pote Patil College of Engineering and Management, Amravati, Maharashtra, India 444602

Vol. 12, Issue 12, December 2025

Full name	Ajay R. Chaware
Science degree	Ph.D.
Academic rank	Independent researcher
Institution	Bapurao Deshmukh College of Engineering and Management, Sewagram, Wardha, Maharashtra, India

Full name	Vijeta A. Jadhav	
Science degree	gree M.Sc. PHYSICS	
Academic rank	Research Scholar	
Institution P. R. Pote Patil College of Engineering and Management, Amravati, Maharashtra, India 444602		