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ABSTRACT: The paper considers the problem of diffraction of a non-stationary plane pressure wave on an absolutely 

rigid stationary sphere in an acoustic half-space. The integral Laplace transform with respect to dimensionless time was 

used to solve the problem. In the image space, the problem is reduced to an infinite system of linear algebraic equations, 

the solution of which is sought in the form of an infinite series of exponentials. Formulas for hydrodynamic pressure are 

obtained. The transition to the originals is carried out using the theory of residues. The results of numerical experiments 

are presented in the form of graphs. 
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I. INTRODUCTION 

 

The study of propagation and diffraction of non-stationary waves in continuous media, including acoustic media 

with obstacles of various kinds, is one of the urgent, fundamental, and applied problems in the dynamics of a deformable 

solid. Many publications are devoted to problems of propagation and diffraction of non-stationary waves in multiply 

connected regions of acoustic and elastic media. The interaction of a plane acoustic shock wave of pressure with a system 

of two rigid parallel circular cylinders of different radii is considered in the study [1]. The initial-boundary value problem 

is solved by the method proposed in [2]. A formula for the hydrodynamic pressure is obtained. In the monograph [3], an 

analytical method is presented for solving non-stationary problems of aerohydroelasticity and hydroelectroelasticity, 

allowing them to be reduced to Volterra integral equations with retarded arguments, and solutions are given to problems 

of diffraction of acoustic shock waves on hollow cylindrical or spherical shells located near a flat boundary. The influence 

of a rigid wall and a free boundary of a half-space on the stress-strain state of spherical and cylindrical shells is 

investigated. The validity of applying the reduction method to the obtained infinite system of integral equations is 

substantiated. A numerical solution to problems of non-stationary action of shock waves on thin-walled shells located 

near a rigid wall of an acoustic half-space is given in [4]. The fluid motion is described by a system of nonlinear equations 

of gas dynamics, and the dynamic behaviour of the shells is presented by equations of the geometric nonlinear theory of 

shells of the S. P. Timoshenko type. The article [5] is devoted to the study of an axisymmetric problem of propagation of 

non-stationary waves from a spherical cavity in an acoustic half-space. The problem is reduced to an infinite system of 

linear algebraic equations, the solution of which is constructed in the form of an infinite series in exponentials. Formulas 

for the characteristics of the acoustic medium are obtained. The paper [6] studies the problem of interaction between an 

oscillating spherical body and a thin elastic cylindrical shell filled with an ideal compressible fluid and immersed in an 

infinite ideal compressible medium with other parameters. The hydrodynamic characteristics of the fluid filling the 

cylindrical volume and surrounding it, as well as the deflections of the cylindrical shell, are determined. The paper [8] 

presents an approach to solving problems of scattering stationary acoustic waves by two non-parallel circular cylinders 

located in an infinite medium. As a result, an infinite system of integro-algebraic equations is obtained. The effect of 

semi-boundedness of the acoustic space when a plane wave is incident on a thin elastic spherical shell is studied in [11]. 

The sought pressure is represented in the form of expansions in series in spherical functions. An infinite system of 

algebraic equations is obtained using the method of imaginary sources and the addition theorem for spherical wave 

functions. The problem of diffraction of a plane wave by a system of two concentric spherical shells surrounded by 

acoustic media is investigated in the article [13]. In this case, the solution is represented as a superposition of elementary 

waves. In the work [14], a numerical solution is given to the problem of propagation of non-stationary waves from a 

spherical cavity in an acoustic half-space. The problem is solved by the finite element method. The results of numerical 
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experiments are presented in the form of graphs. This article is devoted to the study of the problem of diffraction of a 

non-stationary plane wave by an absolutely rigid sphere in an acoustic half-space. The aim of the work is to develop an 

algorithm for solving the problem of diffraction of non-stationary plane waves by an absolutely rigid sphere in an acoustic 

half-space and to study wave processes in the vicinity of the rigid sphere. 

 
II. STATEMENT OF THE PROBLEM 

 

Let the acoustic half-space ( 0z  ) at a depth from the boundary plane ( h ) on the axis 2O z  (the point lies on the flat 

boundary of the half-space) be the center of a fixed rigid ball of radius R  ( R h ). 

At the moment 0 =  in time the front of a non-stationary plane pressure wave with a given potential touches

0  the frontal point of the surface of a rigid sphere. 

 

0 ( cos 1) ( cos 1)f r H r =  + −  + −      (1) 

 

where ( )f   is an arbitrary function that defines the law of change of potential over time; ( )H   is the Heaviside unit 

function. 

Then the potential of a plane 1  wave reflected from the boundary ( 0z = ) of a half-space without a ball has 

the following form: 

 

1 ( cos 1 2 ) ( cos 1 2 )f r h H r h =  − − −  − − − ,    (2) 

 

where the upper sign corresponds to the free surface, and the lower sign to the rigid wall. 

Taking the acoustic approximation model for the liquid and by virtue of the superposition principle (linear 

problem), we represent the particle velocity potential of the medium   as the sum of three terms: 

 

0 1 2 =  +  +  ,       (3) 

 

where 2  is potential for disturbances introduced by the sphere. 

The pressure arising in the acoustic medium is determined by the formula 

 

0 1 2p p p p= + + , i

ip


= −


, ( 0, 2i = ).     (4) 

 

Taking into account the axial symmetry of the problem, the motion of the acoustic medium relative to the 

velocity potential 2  is described by the wave equation 

 
2

2 2

22

 
 = 


,       (5) 

 

where   is Laplace operator in the spherical coordinate system , ,r   . 

The flat boundary of a half-space is either a free surface or a rigid wall. In the case of a free surface, the boundary 

condition on the flat boundary is given by the equality 

 

2 0
0

z
p

=
= ,       (6) 

 

or in the case of a rigid wall, it is defined as follows: 

 

2 0
0

z
V

=
= .       (7) 

 

On the surface of the sphere, the boundary condition has the following form: 
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2 0 11 1 1r r r
V V V

= = =
= − − , i

iV
r


=


, ( 0, 2i = ),    (8) 

 

Initial conditions are homogeneous: 

 

2 20 0
0

= =
 =  =       (9) 

 

and at infinity there is no disturbance: 

 

2lim 0
r→

 = .      (10) 

 

The problem statement is given in the following dimensionless quantities (dimensional quantities are indicated 

by a prime): 

 

*c b


 = , 

2

* *

p
p

c


=


, 
*

v
v

c


= , 

r
r

b


= , 

*c t

b
 = , 

h
h

b


= , 

*

с

с
 = , 

 

where b  is some characteristic linear dimension; t  is time; *  and *c  are the density of the liquid and the speed of 

propagation of waves in the liquid. 

 
III. SOLUTION METHOD 

 

The initial boundary value problem (1) - (10) is solved by applying the integral Laplace transform with respect to time 

  (the superscript L  denotes the transform; s  is the transform parameter). 

Taking into account the absence of a wave at infinity (10) in the image space of the Laplace transform, the 

velocity potential is represented as 

 

2 1 2 1 2 1 1

0 0 1

1 1
( ) ( ) (cos ) ( ) ( ) (cos )L L L

n n n p p p

n p

A s K r s P B s K r s P
r r

 

+ +

= =

 =   +      (11) 

 

where 1 2 ( )nK x+  are modified Bessel functions of the second kind [9]; (cos )nP   are Legendre polynomials [9]; ( )L

nA s , 

( )L

pB s  are unknown functions that are determined from the boundary conditions; 1r  and 1 are the coordinates of a 

spherical coordinate system centered at a point 1O  symmetrical to a point O  relative to the boundary of the half-space. 

Further, taking into account the relationship between the coordinates ,r   and 1 1,r   on the boundary of the half-

space ( 0z = ) 

 

10 0z z
r r

= =
= , 

10 0z z= =
 +  =       (12) 

 

and also the properties of Legendre polynomials [12] 

 

1 00
( 1) (cos ) (cos )n

n n zz
P P

==
−  =  ,     (13) 

 

From the boundary conditions (6) and (7), we obtain the relationship between the functions ( )L

nA s  and ( )L

pB s : 

 

( ) ( 1) ( )L n L

n nB s A s=  − , 

 

where the upper sign corresponds to a rigid wall and the lower sign to a free surface. 

Using addition theorems for Bessel functions 1 2 ( )nK x+  [7], we obtain the following expressions for the images 

of the velocity potential in a spherical coordinate system ( , ,r   ): 

http://www.ijarset.com/


   ISSN: 2350-0328 
 

               

Copyright to IJARSET                                            www.ijarset.com                                                                           23694 

 

 
International Journal of Advanced 

Research in Science, Engineering and 

Technology 

Vol. 12, Issue 8, August 2025 

 

 
 

2 2

0

( , , ) ( , ) (cos )L L

n n

n

r s r s P


=

  =   ,     (14) 

 

2

2 0 01
0

1
( , ) ( ) ( ) ( ) ( ) ( )L L r s L h s

n n n n np pn n
p

r s R r s A s e G r s C s A s e
r s


−  − 

+
=

 
 =  +  

 
 ,  (15) 

 

( 0 0) 0 (2 )( 1) (2 1)
( )

4 (2 )

p p n
n p

np

p n

R h sn
C s b

h s h s

+



 
= −

 − +
=

 
 , 0 0 0( ) ( ) ( )s s

n n nG s R s e R s e−= − − , 

 

0

0

( )
n

n k

n nk

k

R s s −

=

=  , 
( )!

( )! !2
nk k

n k

n k k

+
 =

−
, 0nk = , 0k  , k n  

 

Where 
( 0 0)n pb  are Clebsch-Gordon coefficients [7]; 1 2 ( )nI x+  are modified Bessel functions of the first kind [12]. 

By performing the Laplace transform in (1) and (2) and using addition theorems for Bessel functions [12], we 

find the following expressions for the images of the expansion coefficients of potentials, 0 , 1  in series in Legendre 

polynomials: 

( 1) 2

0 0 01

( 1) (2 1)
( , ) ( ) [ ( ) ( )]

2( )

n
L L r s r s

n n nn

n
r s f s e R r s e R r s

r s

−  − 

+

− +
 = −  − 


,   (16) 

 

2 ( 1) 2

1 0 01

(2 1)
( , ) ( ) [ ( ) ( )]

2( )

L L h s r s r s

n n nn

n
r s f s e e R r s e R r s

r s

−  −  − 

+

+
 = −  − 


.   (17) 

 

Next, we expand the pressure Lp  and velocity Lv  images into series using Legendre polynomials, and, using 

the relationships between the potential and the velocity of particles in the medium, we find the following expressions for 

the coefficients of the velocity series: 

 

( 1) 2

0 1 12 1

( 1) (2 1)
( ) [ ( ) ( )]

2 ( )

n
L L r s r s

n n nn n

n
V f s e R r s e R r s

r s

−  − 

+ +

− +
= − −  − 


,    (18) 

 

2 ( 1) 2

1 1 12 1

(2 1)
( ) [ ( ) ( )]

2 ( )

L L h s r s r s

n n nn n

n
V f s e e R r s e R r s

r s

−  −  − 

+ +

+
=  −  − 


   (19) 

 

2

2 1 12
0

1
( ) ( ) ( ) ( ) ( )

( )

L L r s L h s

n n n n np pn n
p

V R r s A s e G r s C s A s e
r s


−  − 

+
=

 
= −  +  

  
 ,   (20) 

 

1 1 1( ) ( ) ( )s s

n n nG s R s e R s e−= − − , 
1

1

1

0

( )
n

n k

n nk

k

R s s
+

+ −

=

=  , , 1nk nk n kk − =  −  . 

 

The boundary condition on the surface of the sphere with respect to the coefficients of the series has the 

following form: 

 

2 0 11 1 1n n nr r r
V V V

= = =
= − −       (21) 

 

Substituting expressions (18), (19) and (20) into the boundary condition (21) on the surface of the sphere, we 

obtain an infinite system of linear algebraic equations with respect to unknown functions ( )L

nA s , which we write in the 

form of a matrix equation: 
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2 (1) (2) 2 (1) (2) (3) 3 (4) 3y x xy y xy y xy+ − = + + +MA F A F A p p p p ,   (22) 

 
2h sx e− = , 

sy e−= , 

 

where ( )sM  is an infinite diagonal matrix with elements ( )nM s ; 
( ) ( )k sF  are infinite matrices with elements ( ) ( )k

npF s  

( 1, 2k = ); 
( ) ( )i sp  are given infinite vectors of elements ( )L

inp s  ( 1, 4i = ); ( )sA  is an infinite unknown vector with 

elements ( )L

nA s  and these elements are defined by the following expressions: 

 

1( ) ( )n nM s R s= , (1)

1( ) ( ) ( )np np nF s C s R s= − , (2)

1( ) ( ) ( )np np nF s C s R s= , 

 

(1) 1( 1) (2 1) ( )
( ) ( )

2

n

L n

n

n R s
p s f s

s

− + −
= − , 

(2) 1(2 1) ( )
( ) ( )

2

L n

n

n R s
p s f s

s

+ −
=  , 

 

(3) 1( 1) (2 1) ( )
( ) ( )

2

n

L n

n

n R s
p s f s

s

− +
= , 

(4) 1(2 1) ( )
( ) ( )

2

L n

n

n R s
p s f s

s

+
= . 

 

The solution of the system is represented as an infinite exponential series. 

 

1

, 0

( ) i j

ij

i j

s x y


− +

=

= А a ,      (23) 

 

which allows us to construct a solution to an infinite system without using the reduction method. ( )ij sa  are infinite 

unknown vectors with elements, ( ) ( )p

ija s  ( 0p   ) respectively. Substituting this solution series into system (22) and 

equating the coefficients ( ) ( )p

ija s  with the same powers, we obtain recurrence relations for the coefficients x  and y  the 

initial conditions for them. 

 
(3)

( )

00

( )
( )

( )

n n

n

p s
a s

M s
= , 

(1)

( )

02

( )
( )

( )

n n

n

p s
a s

M s
= , ( )

0 ( ) 0n

ja s = , 1j  , 2j  , 

 

(4)

( ) ( )

10 00

0

( )
( ) ( ) ( )

( )

n pn

np

pn

p s
a s C s a s

M s



=

= + , ( )

1 ( ) 0n

ja s = , 1j  , 2j  , 

 

(2)

( ) ( ) ( )

12 02 00

0 0

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

n p pn n

np np

p pn n

p s M s
a s C s a s C s a s

M s M s

 

= =

−
= + −  ,    (24) 

( ) ( ) ( )

1, 1, 2

0 0

( )
( ) ( ) ( ) ( ) ( )

( )

n p pn

ij np i j np i j

p pn

M s
a s C s a s C s a s

M s

 

− − −

= =

−
= −  , 1i  , 2j  . 

 

Recurrence relations allow us to define all elements ( ) ( )p

ija s , ( 0p  ) of the corresponding columns ( )ij sa  in 

the form of rational functions, which makes it possible to calculate their originals and, therefore, to find the originals of 

the coefficients of the pressure 
Lp  and velocity 

LV  series using residue theory. 

For the coefficients of the series, initial conditions and recurrence relations are obtained that do not require the 

use of the reduction method. The coefficients of the series of the sought functions are determined in the form of rational 

functions, which makes it possible to find the originals using residue theory. 

In this case, the expansion coefficients of the hydrodynamic pressure and velocity are determined by the 

formulas 
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( )

2 01
, 0

1
( , ) ( ) ( )

( )

L n r

n n ijn n
i j

p r s R r s a s y
r s



+
=

= −  +
 ( ) 1

0

0

( ) ( ) ( )p i j

n np ij

p

G r s C s a s x x y


− +

=


+  


 ,   (25) 

( )

2 12
, 0

1
( , ) ( ) ( )

( )

L n r

n n ijn n
i j

V r s R r s a s y
r s



+
=

= −  +
 ( ) 1

1

0

( ) ( ) ( )p i j

n np ij

p

G r s C s a s x x y


− +

=


+  


 . 

 

IV. NUMERICAL RESULTS 

 

As an example, we consider the diffraction of non-stationary plane pressure waves on a stationary rigid ball in a half-

space of water, in which * 1500 /c m s= , 
3

* 1000kg m = . b R= . Dimensionless quantities are equal 1.5h = , 1R = , 

1 = . The function chosen as the law of change of the incident wave over time was 
1

( )f s
s

= . 

The hydrodynamic pressure at points 0 =  (curve 1), 2 =   (curve 2), and  =   (curve 3) of the sphere 

surface is calculated. The numerical results are obtained taking into account five terms of the Legendre polynomial series. 

The graphs in Fig. 1 are obtained for a free surface, and the graphs in Fig. 2 are obtained for a rigid wall. At 3  , the 

flat boundary, there is a significant effect on the change in the distribution of hydrodynamic pressure. In the case of a 

rigid wall (Fig. 2), at moments of time 3 = and 4 at point  =   (curve 3); 4 = at point 2 =   (curve 2); 5 = at 

point 0 =  (curve 1), the pressure value increases significantly, which is caused by the influence of waves reflected 

from the flat boundary. 

 

 

Fig. 1. Change in pressure in the case of a free surface. 
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Fig. 2. Pressure change in the case of a rigid wall. 

V. CONCLUSION 

An algorithm for solving the problem of diffraction of non-stationary plane waves on an absolutely rigid sphere in an 

acoustic half-space has been developed. In the Laplace image space, an infinite system of linear algebraic equations has 

been obtained, the solution of which is constructed as an infinite series in exponentials, which made it possible to obtain 

a solution to the infinite system without using the reduction method. The graphs of the pressure dependence on time show 

that the waves reflected from the plane boundary affect the hydrodynamic state of the medium. 
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