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ABSTRACT: The aim of this paper is to extend the generalized P −B birecurrent space by using the properties of 

𝐶2 − like space, 𝐶 − reducible space, semi −𝐶 − reducible space and 𝐶3 − like to get new spaces that are called 

2 like ( )
n

C G P BRF− − −B , reducible ( )
n

C G P BRF− − −B , reducible ( )
n

semi C G P BRF− − − −B  and

3 like ( )
n

C G P BRF− − −B  ,  respectively. 
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I. INTRODUCTION  

 

Four forms of the ℎ(ℎ𝑣) −torsion tensor 𝐶𝑗𝑘ℎ  are called  𝐶2 −like space, 𝐶 −reducible space, semi−𝐶 −reducible space 

and 𝐶3 −like space have been studied by the Finslerian geometers.  Matsumoto and Numata [10] and Aveesh et al. [17] 

introduced definition for 𝐶2 −like space. Singh and Gupta [18] discussed some properties for 𝐶2 −like space. 

 

Saxena [12] studied 𝐶 −reducible Finsler space with Douglas tensor and gave the condition for Finsler space to be 

𝐶 −reducible Finsler space. Dwivedi [11] obtained every 𝐶 −reducible Finsler space is 𝑃 −reducible and converse is not 

necessarily true. 

 

Tiwari et al. [7] and Heydari [3] introduced a definition for semi−𝐶 −reducible space and studied its properties. Also, 

Chethana and Narasimhamurthy [5] showed that every semi−𝐶 −reducible manifold with 𝐶 −reducible metric reduces 

to a Landsberg manifold.  

     

Tayebi and Peyghan [4], Tripathi and Pandey [6] and Numata [16] introduced a definition for 𝐶3 −like space and 

discussed its relationship with other spaces in Finsler space. In addition, Gangopadhyay and Tiwari [13] obtained that 

𝐶3 −like Finsler metric may be considered as a generalization of 𝐶 −reducible, semi−𝐶 −reducible and 𝐶2 −like Finsler 

metrics.  

 

Beizavi [14] introduced a definition for semi−𝐶 −reducible space and 𝐶3 −like space. Also, he studied the relationship 

between 𝐶3 −like metric with 𝐶 −reducible metric, semi−𝐶 −reducible metric and 𝐶2 −like metric. In this paper, 

special forms of the ℎ(ℎ𝑣) −torsion tensor 𝐶𝑖𝑘ℎ in the generalized P −B birecurrent space have been studied. 

 

 

II. PRELIMINARIES 

 

In this section, some conditions and definitions will be given for the purpose of this paper. An 𝑛 −dimensional space  𝑋𝑛 

equipped with a function 𝐹(𝑥, 𝑦) which denoted by 𝐹𝑛  = (𝑋𝑛 , 𝐹(𝑥, 𝑦)) called a Finsler space if the function 𝐹(𝑥, 𝑦) 
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satisfying the request conditions [15, 20]. Matsumoto [9] introduced the (ℎ)ℎ𝑣 −torsion tensor 𝐶𝑖𝑗𝑘 that is positively 

homogeneous of degree -1 in 𝑦𝑖  and symmetric in all its indices which is defined by   

           21 1
.

2 4
ijk i jk i j kC g F=  =     

The above tensor satisfies the following 

(2.1)      ,h hj

ik ijkC g C=  

where 𝐶𝑗𝑘
𝑖  is called associate tensor of the tensor  𝐶𝑖𝑗𝑘  .   

Berwald's covariant derivative 
i

k j
TB  of an arbitrary tensor field  

i

j
T  with respect to 

k
x  is given by [8] 

             ( ) .i i i r r i i r

k j k j r j k j rk r jkT T T G T G T G=  −  + −B   

 

Let Berwald’s covariant derivative of second order for the (ℎ)ℎ𝑣 −torsion tensor 𝐶𝑖𝑗𝑘 and its associative  𝐶𝑗𝑘
𝑖   which 

satisfy [19]      

(2.2)      ( )i i i i

l m kh lm kh lm k h h kC a C b y y = + −B B  

and 

(2.3)      ( ),l m jkh lm jkh lm jk h jh kC a C b g y g y= + −B B  

where 𝑎𝑙𝑚 and  𝑏𝑙𝑚 are non - zero covariant tensors field. 

Definition 2.1. A Finsler space 𝐹𝑛(𝑛 ≥ 2) with 
2 0j

jC C C=  , it is called a 𝐶2 − like space if the (ℎ)ℎ𝑣 −torsion 

tensor 𝐶𝑗𝑘ℎ can be written in the form [14, 18] 

(2.4)    
2/ ,jkh j k hC C C C C=  

where .kh

j jkhC g C=  

Definition 2.2. A Finsler space 𝐹𝑛 is called a 𝐶 −reducible space if the (ℎ)ℎ𝑣 −torsion tensor 𝐶𝑗𝑘ℎ is characterized by 

the condition [12, 17] 

(2.5)    
1

( 1)
( )jkh jk h kh j hj kC h C h C h C

n
= + +

+
 , 

where jk jk j kh g l l= −  is an angular metric tensor. 

Definition 2.3. A Finsler metric 𝐹𝑛 is called a semi−𝐶 −reducible if the (ℎ)ℎ𝑣 −torsion tensor 𝐶𝑗𝑘ℎ is given by [3, 5]  

(2.6)       , 

where   and  are scalar function on  𝐹𝑛  and   . 

Definition 2.4. A Finsler metric 𝐹𝑛 is called a 𝐶3 −like space if the (ℎ)ℎ𝑣 −torsion tensor 𝐶𝑗𝑘ℎis given by [4, 16]  

(2.7)       , 

where and  are 𝑦 −homogeneous scalar functions on 𝐹𝑛 of degree −1 and 1, respectively. 

 

Alaa et al. [1, 2] introduced the generalized P −B birecurrent space which Cartan's second curvature tensor 𝑃𝑗𝑘ℎ
𝑖  satisfies 

the condition      

(2.8)     ( ) 2 ( ),i i i i t i i

l m jkh lm jkh lm j kh k jh m t j khl k jhlP a P b g g y C C    = + − − −B B B        0i

jkhP  . 

2
1

[ ( ) ]jkh jk h kh j hj k j k h

p q
C h I h I h I I I I

n
= + + +

+ I

( , )p p x y= ( , )q q x y=
2 i

iI I=I

[( ) ( )]jkh j kh k hj h jk j k h j k h j k hC A h A h A h B I I I B I I I B= + + + + +

( , )i iA A x y= ( , )iB x y
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This space is denoted by ( )
n

G P BRF−B .   

 

III. A 𝑪𝟐 −LIKE− GENERALIZED  BIRECURRENT SPACE 

 

In this section, we extened the generalized P −B birecurrent space i.e. characterized by the condition (2.8), by using the 

properties of 𝐶2 −like space to obtain new space contain the same properties of the main space.   

 

Definition 3.1. The generalized P −B birecurrent space which is 𝐶2 −like space i.e, satisfies the condition (2.4), will 

be called a 𝐶2 −like generalized P −B birecurrent space and will be denoted briefly by 2 like ( )
n

C G P BRF− − −B . 

 

        Let us consider a 2 like ( )
n

C G P BRF− − −B . 

Taking −B covariant derivative for the condition (2.4) twice with respect to 𝑥𝑚 and  𝑥𝑙,  respectively, using eq. (2.3) 

we get 

             

2/( ) ( )m j k h lm jl kh lm jk h jh kC C C C a C b g y g y= + −B B . 

Using the condition (2.4) in above equation, we get 

(3.1)     
2 2/ /( ) ( ) ( )m j k h lm j k h lm jk h jh kl C C C C a C C C C b g y g y= + −B B . 

 

Transvecting the condition (2.4) by 
ijg using (2.1), we get 

(3.2)    
2/i i

kh j kC C C C C= , 

where 
i ij

jC g C= . 

Taking −B covariant derivative for eq. (3.2) twice with respect to 𝑥𝑚 and  𝑥𝑙,  respectively, using eq. (2.2) we get 

           2/( ) ( )i i i i

m j k lm kh lm k h hl kC C C C a C b y y = + −B B . 

Using eq.  (3.2)  in above equation, we get 

(3.3)    
2 2/ /( ) ( ) ( )i i i i

m j k lm j k lml k h h kC C C C a C C C C b y y = + −B B . 

 

From eqs. (3.1) and (3.3), we conclude the following theorem:  

Theorem 3.1. In 2 like ( )
n

C G P BRF− − −B , Berwald’s covariant derivative of second order for the tensors 

2/( )j k hC C C C  and 
2/( )i

j kC C C C are given by eqs. (3.1) and (3.3), respectively.  

 

 

IV. A 𝑪 −REDUCIBLE− GENERALIZED  BIRECURRENT SPACE 

 

In this section, we extened the generalized P −B birecurrent space i.e. characterized by the condition (2.8) by using the 

properties of  𝐶 −reducible space to obtain new space contain the same properties of the main space.   

 

Definition 4.1. The generalized P −B birecurrent space which is 𝐶 −reducible space i.e, satisfies the condition (2.5), 

will be called a 𝐶 − reducible generalized P −B birecurrent space and will be denoted briefly by 

reducible ( )
n

C G P BRF− − −B . 

 

            Let us consider a reducible ( )
n

C G P BRF− − −B .  

P −B

P −B
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Taking −B covariant derivative for the condition (2.5) twice with respect to 𝑥𝑚 and  𝑥𝑙,  respectively, using eq. (2.3) 

we get 

             

1

1
[ ( )] ( )m jk h kh j hj k lm jkh lm jkl h jh kh C h C h C a C b g y g y

n
+ + = + −

+
B B . 

 

Using the condition (2.5)  in above equation, we get   

(4.1)      
1 1

1 1
[ ( )] [ ( )]m jk h kh j hj kl lm jk h kh j hj kh C h C h C a h C h C h C

n n
+ + = + +

+ +
B B  

                                                                                      
( )lm jk h jh kb g y g y+ − . 

 

Transvecting the condition (2.5) by 
ijg , using (2.1), we get 

(4.2)     
1

,
1
( )i i i i

kh k h kh h kC h C h C h C
n

= + +
+

 

where 
i ij

jC g C=    and    
i ij

k jkh g h= . 

Taking −B covariant derivative for eq.  (4.2) twice with respect to 𝑥𝑚 and  𝑥𝑙,  respectively, using eq. (2.2) we get 

             

1

1
[ ( )] ( )i i i i i i

m k h kh h k lm kh lm h h kl kh C h C h C a C b y y
n

 + + = + −
+

B B . 

Using eq. (4.2) in above equation, we get 

(4.3)     
1 1

1 1
[ ( )] [ ( )]i i i i i i

m k h kh h k lm k kl h h h kh C h C h C a h C h C h C
n n

+ + = + +
+ +

B B  

                                                                                 
( )i i

lm k h h kb y y + − . 

 

From eqs. (4.1) and (4.3), we conclude the following theorem: 

Theorem 4.1. In reducible ( )
n

C G P BRF− − −B , Berwald’s covariant derivative of first order for the tensors 

1

1
[ ( )]jk h kh j hj kh C h C h C

n
+ +

+
and 

1

1
[ ( )]i i i

k h kh h kh C h C h C
n

+ +
+

  are given by eqs. . (4.1) and (4.3), 

respectively. 

 

 

V. A SEMI−𝑪 −REDUCIBLE−GENERALIZED  BIRECURRENT SPACE 

 

In this section, we extened the generalized P −B birecurrent space i.e. characterized by the condition (2.8), by using the 

properties of semi−𝐶 −reducible space to obtain new space contain the same properties of  the main space.   

 

Definition 5.1. The generalized P −B recurrent space which is semi−𝐶 −reducible space i.e, satisfies the condition (2.6), 

will be called a semi −𝐶 − reducible generalized P −B birecurrent space and will be denoted briefly by 

reducible ( )
n

semi C G P BRF− − − −B . 

 

         Let us consider a reducible ( )
n

semi C G P BRF− − − −B .  

Taking −B covariant derivative for the condition (2.6) twice with respect to 𝑥𝑚 and  𝑥𝑙,  respectively, using eq. (2.3) 

we get 

           
2

.
1

[ ( ) ] ( )l m jk h kh j hj k j k h lm jkh lm jk h jh k

p q
h I h I h I I I I a C b g y g y

n
+ + + = + −

+ I
B B

 

P −B
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Using the condition (2.6)  in above equation, we get 

(5.1)    
2 2

1 1
[ ( ) ] [ ( ) ]l m jk h kh j hj k j k h lm jk h kh j hj k j k h

p q p q
h I h I h I I I I a h I h I h I I I I

n n
+ + + = + + +

+ +I I
B B  

                                                                                       .( )lm jk h jh kb g y g y+ −  

 
Transvecting the condition (2.6) by 𝑔𝑖𝑗  , using eq. (2.1), we get 

(5.2)     
2

.
1

[ ( ) ]i ij

kh jk h kh j hj k j k h

p q
C g h I h I h I I I I

n
= + + +

+ I
 

Taking −B covariant derivative for eq. (5.2) twice with respect to 𝑥𝑚 and  𝑥𝑙, respectively, using eq. (2.2), we get 

           
2

.
1

( [ ( ) ]) ( )ij i i i

l m jk h kh j hj k j k h lm kh lm k h h k

p q
g h I h I h I I I I a C b y y

n
 + + + = + −

+ I
B B

 
Using eq. (5.2) in above equation, we get 

(5.3)     
2

1
( [ ( ) ])ij

l m jk h kh j hj k j k h

p q
g h I h I h I I I I

n
+ + +

+ I
B B  

            
2

.
1

( [ ( ) ]) ( )ij i i

lm jk h kh j hj k j k h lm k h h k

p q
a g h I h I h I I I I b y y

n
 = + + + + −

+ I
 

 

From eqs. (5.1) and (5.3), we conclude the following theorem: 

Theorem 5.1.  In reducible ( )
n

semi C G P BRF− − − −B , Berwald’s  covariant  derivative  of  second order for the 

tensors [
𝑝

1+𝑛
(ℎ𝑗𝑘𝐼ℎ + ℎ𝑘ℎ𝐼𝑗 + ℎℎ𝑗𝐼𝑘) +

𝑞

‖Ι‖2 𝐼𝑗𝐼𝑘𝐼ℎ]  and ( ijg [
𝑝

1+𝑛
(ℎ𝑗𝑘𝐼ℎ + ℎ𝑘ℎ𝐼𝑗 + ℎℎ𝑗𝐼𝑘) +

𝑞

‖Ι‖2 𝐼𝑗𝐼𝑘𝐼ℎ])  are 

given by eqs. (5.1) and (5.3), respectively. 

 

VI. A 𝑪𝟑 −LIKE−GENERALIZED  BIRECURRENT SPACE 

 

In this section, we extened the generalized P −B biecurrent space i.e. characterized by the condition (2.8), by using the 

properties of 𝐶3 −like space to obtain new space contain the same properties of the main space.   

 

Definition 6.1. The generalized P −B birecurrent space which is 𝐶3 −like space i.e,  satisfies the condition (2.7), will be 

called a 𝐶3 −like generalized P −B birecurrent space and will be denoted briefly by 3 like ( )
n

C G P BRF− − −B . 

         

         Let us consider a 3 like ( )
n

C G P BRF− − −B . 

Taking −B covariant derivative for the condition (2.7) twice with respect to 𝑥𝑚 and  𝑥𝑙, respectively, using eq. (2.3), 

we get 

           .[( ) ( )] ( )l m j kh k hj h jk j k h j k h j k h lm jkh lm jk h jh kA h A h A h B I I I B I I I B a C b g y g y+ + + + + = + −B B  

Using the condition (2.7) in above equation, we get 

(6.1)    [( ) ( )]l m j kh k hj h jk j k h j k h j k hA h A h A h B I I I B I I I B+ + + + +B B  

            .[( ) ( )] ( )lm j kh k hj h jk j k h j k h j k h lm jk h jh ka A h A h A h B I I I B I I I B b g y g y= + + + + + + −  

 
Transvecting the condition (2.7) by 𝑔𝑖𝑗 , using eq. (2.1), we get 

P −B
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(6.2)     .( [( ) ( )])i ij

kh j kh k hj h jk j k h j k h j k hC g A h A h A h B I I I B I I I B= + + + + +
 

Taking −B covariant derivative for eq. (6.2) twice with respect to 𝑥𝑚 and  𝑥𝑙, respectively, using eq. (2.2), we get 

           .( [( ) ( )]) ( )ij i i i

l m j kh k hj h jk j k h j k h j k h lm kh lm k h h kg A h A h A h B I I I B I I I B a C b y y + + + + + = + −B B  

 

Using eq. (6.2) in above equation, we get 

(6.3)     ( [( ) ( )])ij

l m j kh k hj h jk j k h j k h j k hg A h A h A h B I I I B I I I B+ + + + +B B  

            .( [( ) ( )]) ( )ij i i

lm j kh k hj h jk j k h j k h j k h lm k h h ka g A h A h A h B I I I B I I I B b y y = + + + + + + −  

 

From eqs. (6.1) and (6.3), we conclude the following theorem: 

Theorem 6.1. In 3 like ( )
n

C G P BRF− − −B , Berwald’s covariant derivative of second order for the tensors  

[(𝐴𝑗ℎ𝑘ℎ + 𝐴𝑘ℎℎ𝑗 + 𝐴ℎℎ𝑗𝑘) + (𝐵𝑗𝐼𝑘𝐼ℎ + 𝐼𝑗𝐵𝑘𝐼ℎ + 𝐼𝑗𝐼𝑘𝐵ℎ)]  and ( ijg [(𝐴𝑗ℎ𝑘ℎ + 𝐴𝑘ℎℎ𝑗 + 𝐴ℎℎ𝑗𝑘) + (𝐵𝑗𝐼𝑘𝐼ℎ + 𝐼𝑗𝐵𝑘𝐼ℎ +

𝐼𝑗𝐼𝑘𝐵ℎ)]) are given by eqs. (6.1) and (6.3), respectively.  

 

 

VII. CONCLUSION 

 

We discussed some special spaces in the generalized P −B birecurrent space to get new spaces related to it. Certain 

identities belong to these spaces have been obtained. 
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