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ABSTRACT: The aim of this paper is to extend the generalized B P —birecurrent space by using the properties of
C2 —like space, C —reducible space, semi—C —reducible space and C3 —like to get new spaces that are called

C2-like-G(BP)-BRF, , C-reducible—G(BP)-BRF, , semi—-C —reducible—G(BP)-BRF  and
C3-like—G(B P)—BRF, , respectively.

KEY WORDS: €2 —like space, C —reducible space, semi—C —reducible space, €3 —like space, generalized B P —
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I. INTRODUCTION

Four forms of the h(hv) —torsion tensor Cj,, are called C2 —like space, C —reducible space, semi—C —reducible space
and C3 —like space have been studied by the Finslerian geometers. Matsumoto and Numata [10] and Aveesh et al. [17]
introduced definition for C2 —like space. Singh and Gupta [18] discussed some properties for C2 —like space.

Saxena [12] studied C —reducible Finsler space with Douglas tensor and gave the condition for Finsler space to be
C —reducible Finsler space. Dwivedi [11] obtained every C —reducible Finsler space is P —reducible and converse is not
necessarily true.

Tiwari et al. [7] and Heydari [3] introduced a definition for semi—C —reducible space and studied its properties. Also,
Chethana and Narasimhamurthy [5] showed that every semi—C —reducible manifold with C —reducible metric reduces
to a Landsberg manifold.

Tayebi and Peyghan [4], Tripathi and Pandey [6] and Numata [16] introduced a definition for €3 —like space and
discussed its relationship with other spaces in Finsler space. In addition, Gangopadhyay and Tiwari [13] obtained that
C3 —like Finsler metric may be considered as a generalization of C —reducible, semi—C —reducible and €2 —like Finsler
metrics.

Beizavi [14] introduced a definition for semi—C —reducible space and €3 —like space. Also, he studied the relationship
between €3 —like metric with C —reducible metric, semi—C —reducible metric and C2 —like metric. In this paper,
special forms of the h(hv) —torsion tensor C;;;, in the generalized B P —birecurrent space have been studied.

Il. PRELIMINARIES

In this section, some conditions and definitions will be given for the purpose of this paper. An n —dimensional space X,,
equipped with a function F(x, y) which denoted by E, = (X,,, F(x,y)) called a Finsler space if the function F(x,y)
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satisfying the request conditions [15, 20]. Matsumoto [9] introduced the (h)hv —torsion tensor C;j that is positively
homogeneous of degree -1 in y* and symmetric in all its indices which is defined by

1. 1. . .
Cix :Eai 9y =—0,0,0, F2.

4
The above tensor satisfies the following
h hj
21 Cy=9"Cy,
where C]-ik is called associate tensor of the tensor Cjj; .

Berwald's covariant derivative B iji of an arbitrary tensor field TJ.i with respect to x* is given by [8]

BT/ =0,T, - (a,T;)Gkr +T,Gy —T,G,.

Let Berwald’s covariant derivative of second order for the (h)hv —torsion tensor C;j, and its associative jik which
satisfy [19]

22) B B,Cy=a,Cp +b, (5 Yn — S Yi)

and

23) BB ,Ciw=2a,Cjn +b|m(gjkyh _gjhyk)!

where a;,, and by, are non - zero covariant tensors field.

Definition 2.1. A Finsler space E,(n > 2) with C* = CJ-Cj #0, it is called a 2 — like space if the (k)hv —torsion
tensor Cjy, can be written in the form [14, 18]

24 C,,=C,CC,/C?

where C; = gthjkh.

Definition 2.2. A Finsler space F, is called a C —reducible space if the (h)hv —torsion tensor Cj, is characterized by
the condition [12, 17]

1
25 Cy=——(h,C,+h,C,+h,C.) .

(n+1)
where h; =g, —Il, isan angular metric tensor.
Definition 2.3. A Finsler metric F, is called a semi—C —reducible if the (h) hv —torsion tensor Cj, is given by [3, 5]
p
(26) Cy —[ (hJk S+l +hl )+ L]

where P=P(X,Y) and d=d(X,Y)are scalar function on F, and |||||2 =1l

Definition 2.4. A Finsler metric F, is called a C3 —like space if the (h)hv —torsion tensor Cjyyis given by [4, 16]

7  Cy, :[(Ajhkh + AN, + Ahhjk)"‘(leklh +1;B 1, + IjIth)] )

where A = A(X,y)and B, (X, y) are y —homogeneous scalar functions on F, of degree —1 and 1, respectively.
Alaaetal. [1, 2] introduced the generalized B P —birecurrent space which Cartan's second curvature tensor Pj"kh satisfies

the condition

(2.8) B B ijIkh =a, lekh + b|m (5}gkh - 5ligjh) - 2yt,umB t (5;Ckhl - 5IithI )' ijh #0.
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This space is denoted by G(B P) - BRF, .

1. A €2 —LIKE— GENERALIZED B P - BIRECURRENT SPACE

In this section, we extened the generalized B P —birecurrent space i.e. characterized by the condition (2.8), by using the
properties of C2 —like space to obtain new space contain the same properties of the main space.

Definition 3.1. The generalized B P —birecurrent space which is C2 —like space i.e, satisfies the condition (2.4), will
be called a C2 —like generalized B P —birecurrent space and will be denoted briefly by C2 - like - G(B P) — BRF,.

Let us consider a C2 - like — G(B P) — BRF,.

Taking B — covariant derivative for the condition (2.4) twice with respect to x™ and x!, respectively, using eq. (2.3)
we get

B,B m(CjCkCh /CZ) =a,,C, +by, (gjk Yh — gjhyk) '
Using the condition (2.4) in above equation, we get

1) BB m(CjCkCh /Cz) = alm(CjCkCh /C2)+b|m(gjkyh _gthk)-

Transvecting the condition (2.4) by gij using (2.1), we get

32 C,=C'C,C /C?

where C' = gijCj .

Taking B — covariant derivative for eq. (3.2) twice with respect to x™ and x*, respectively, using eq. (2.2) we get
BB m(CiCjCk /Cz) = aImCIih +b|m (5Iiyh _5ri1yk) :

Using eq. (3.2) in above equation, we get

33 BB,(c'cc,/c?)=a,(cic,c,/c?)+b,(siy, -5y).

From egs. (3.1) and (3.3), we conclude the following theorem:
Theorem 3.1. In C2-like-G(BP)-BRF,, Berwald’s covariant derivative of second order for the tensors

(CJ.CkCh /Cz) and (CiCjCk /CZ) are given by egs. (3.1) and (3.3), respectively.

IV. A € —REDUCIBLE— GENERALIZED B P -BIRECURRENT SPACE

In this section, we extened the generalized B P —birecurrent space i.e. characterized by the condition (2.8) by using the
properties of C —reducible space to obtain new space contain the same properties of the main space.

Definition 4.1. The generalized B P —birecurrent space which is C —reducible space i.e, satisfies the condition (2.5),
will be called a C — reducible generalized BP- birecurrent space and will be denoted briefly by

C —reducible - G(B P) - BRF, .

Let us consider a C —reducible —G(B P) — BRF, .
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Taking B — covariant derivative for the condition (2.5) twice with respect to x™ and x!, respectively, using eq. (2.3)
we get

B,B m[ﬁ (hjkCh +h,C; + hhjck)] =8,Cjn + b0y (gjkyh _gjhyk)'

Using the condition (2.5) in above equation, we get
1 1
41 BB m[m (hjkch +h,C; + hhjck)] = alm[m (hjkCh +h,C, + hhjCk)]
+hy,, (gjkyh - gthk) '

Transvecting the condition (2.5) by g” , using (2.1), we get
. 1 . . .
42) C, =——(hC +h,C'+hC ),
(4.2) kh n+1(kh kh hk)
where C' = gijCj and hy = gijhjk.
Taking B — covariant derivative for eq. (4.2) twice with respect to x™ and x!, respectively, using eq. (2.2) we get
1 i i i i i i
B |B m[m (hkch + hth + hhck)] = aIkah + blm (5k Y _5h yk) )
Using eq. (4.2) in above equation, we get
1 i i i 1 i i i
43 BB m[m (hkCh +h,C' + thk)] = 8 [m (hkCh +h,C' + thk)]
+by, (5|l Yo =6 yk) '

From egs. (4.1) and (4.3), we conclude the following theorem:
Theorem 4.1. In C —reducible —G(B P)—BRF, , Berwald’s covariant derivative of first order for the tensors

[ni+1 (hjkCh +h,,C, +hhjCk)] and [n_]-;-l (h,iCh +h,C' +h,i]Ck)] are given by egs. . (4.1) and (4.3),

respectively.

V. A SEMI-C —REDUCIBLE—GENERALIZED B P - BIRECURRENT SPACE

In this section, we extened the generalized B P —birecurrent space i.e. characterized by the condition (2.8), by using the
properties of semi—C —reducible space to obtain new space contain the same properties of the main space.

Definition 5.1. The generalized B P —recurrent space which is semi—C —reducible space i.e, satisfies the condition (2.6),
will be called a semi —C — reducible generalized B P - birecurrent space and will be denoted briefly by

semi — C — reducible - G(B P) - BRF, .

Let us consider a semi —C — reducible - G(B P) - BRF, .

Taking B — covariant derivative for the condition (2.6) twice with respect to x™ and x!, respectively, using eq. (2.3)
we get

BIBm[%(hjklh +hkh|j +hhj|k)+ﬁljlklh]:almcjkh +b|m(gjkyh _gjhyk)'
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Using the condition (2.6) in above equation, we get

(51) BB [ P (hjklh+hkhlj+hhjl )+” T |,|k|h]=a,m[%(hjk|h+hkh|j+hh,.|k)+ﬁ|j|k|h

+by,, (gjkyh - gthk)-

Transvecting the condition (2.6) by g% , using eq. (2.1), we get
i p q
52) Ci = ”[ (h]k Al 4R )+ —= 1L,

Taking B — covariant derivative for eq. (5.2) twice with respect to x™ and x!, respectively, using eq. (2.2), we get
p q
BB (g”[_(hjk —un j+hhj|k)+ AL Ih]) aImCIlh+blm(5llyh 5I'I1yk)

-
Using eq. (5.2) in above equation, we get
(53 BB (g"[i(hjk 1+ hol +h )+ —=11,1,])

[

i L) +b (Sty, —Sivi)-

From egs. (5.1) and (5.3), we conclude the following theorem:
Theorem 5.1. In semi—C —reducible - G(B P) — BRF,, Berwald’s covariant derivative of second order for the

_alm(gu[_(hjklh +he !l +hyl, )+

tensors [ ( kIh + hkhl + hhjlk) + |I||21 Iklh] and ( i [ ( kIh + hkhI + hh]Ik) + |I||21 Iklh]) are
given by egs. (5.1) and (5.3), respectively.

VI. A €3 —LIKE—GENERALIZED B P - BIRECURRENT SPACE

In this section, we extened the generalized B P —biecurrent space i.e. characterized by the condition (2.8), by using the
properties of C3 —like space to obtain new space contain the same properties of the main space.

Definition 6.1. The generalized B P —birecurrent space which is C3 —like space i.e, satisfies the condition (2.7), will be
called a C3 —like generalized B P —birecurrent space and will be denoted briefly by C3 - like —G(B P) - BRF, .

Let us consider a C3—like—G(B P) - BRF, .

Taking B — covariant derivative for the condition (2.7) twice with respect to x™ and x!, respectively, using eq. (2.3),
we get

B |B m[(Ajhkh + Akhhj + Ahhjk)+(Bj|k|h + IjBkIh + Ijlth)] = almcjkh +b|m(gjkyh _gjhyk)'
Using the condition (2.7) in above equation, we get

61 BB, [(Ah,+Ah, +Ah)+(B11,+1,B1,+1,1,B,)]
= alm[(Ajhkh + AN, + A1hjk)+(Bj L1, + 1Bl + Ijlth)]+blm(gjkyh _gjhyk)'
Transvecting the condition (2.7) by g, using eq. (2.1), we get
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(6.2) o = (gij[(Ajhkh +Ah, +Ahhjk)+(Bj|k|h +1;B, 1, + IjIth)])'

Taking B — covariant derivative for eq. (6.2) twice with respect to x™ and x!, respectively, using eq. (2.2), we get
B |B m(g“[(Ajhkh + Akhhj + A11hjk)+(Bj|k|h + IjBkIh + IjIth)]) =8, Ilh +b|m(5klyh - I'I1yk)'

Using eq. (6.2) in above equation, we get
63 BB,(g"[(Ah,+Ah,+AN)+(B 11, +1B1,+1,18)])
—a, (g"[(Ah, + Ah, +Ah)+(B11,+1,B1, +1,1,B)]) +b,.(5y, - 5lv.).

From egs. (6.1) and (6.3), we conclude the following theorem:
Theorem 6.1. In C3-like—G(BP)-BRF, , Berwald’s covariant derivative of second order for the tensors

[(Ah, + Achy; + Auhy) + (BjI L, + 1B, I, + 1;1,B,)] and (g” [(Ajh, + Achyy + Anhy) + (BjL Ly, + 1B, I, +

I]-Ith)]) are given by egs. (6.1) and (6.3), respectively.

VII. CONCLUSION

We discussed some special spaces in the generalized B P —birecurrent space to get new spaces related to it. Certain
identities belong to these spaces have been obtained.
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