

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 9, Issue 8, August 2022

# **Enhanced Data Security in Medical Information System using IoT, ANN and SVM**

Bedford-Fubara Chioma Onyinyechukwu, Prince O. Asagba

PhD Student, Faculty of Natural and Applied Science, Department of Computer Sciences, Ignatius Ajuru University of Education, Rumuolumeni, Port Harcourt, Rivers State, Nigeria

Professor, Lecturer of University of Port Harcourt, Department of Computer Sciences, Choba, Rivers State, Nigeria

**ABSTRACT:** Trust in embedded systems is a combination of people, process, and technology. Also, Trust requirement in IoT is related to identifying management and access control issues. Developing trust is very essential for a system and trustworthiness can never be guaranteed by applying high amount of care, concern, or validation. The evidences that support the trustworthiness of a system can come from different sources such usability, past performance or quality of outcomes for designers, implementers, etc. However, after implementing our hardware (IoT fingerprint scanner) and training it with Artificial Neural Network, trust in the system was enhanced. deep and lasting affected. Object-Oriented System Development Methodology (OOSDM) which has proven to be the best method for IoT-based embedded systems design was adopted. The adopted AI technic by the proposed system encompassed the hybrid of Support Vector Machine (SVM) and Artificial Neural Network (ANN). The role of ANN and SVM encompassed making the proposed system robust and more intelligent than the existing system. We evaluated the integrity and accuracy of the new and improved CASE System below by judging it on the four main IoT parameters which are Trust, Security, Confidentiality and Privacy. The result values based on the mentioned parameters are 1, 1, 1, 1, 0, 50, 47, 69, 65, and 72 respectively, while that of the existing system is 1, 1, 2, 1, 1, 100, 95, 100, 90, and 100 respectively. In other words, performance evaluation of both systems based on the mentioned parameters clearly showed that the proposed system performed better than the existing system.

KEYWORDS: Data Security, Medical Information Systems, Internet Of Things, Artificial Neural Network, Support Vector Machines.

### 1. INTRODUCTION

Secured computing is a common goal that can enhance trust in many automated domains. In order to achieve secure computing, data in itself has to be kept safe using appropriate measures. A good measure capable of enhancing data protection is restricting access to vital information to only selected users such as an administrator of the organization in charge of managing the information and the owner of the information who we term customers or users. The use of biometrics in addition to the regular data access validation methods that involve username and password will prove to be effective. Biometric data such as data from finger prints, face recognition, speech detection is unique to each individual; hence they have the capability of protecting data effectively. Secured data is one that fulfills all the requirements of a user and the integrity of the data cannot be tampered by hackers and saboteurs. Data protection requires security of IoT hardware and software infrastructure and development of correct application codes that extend security to enable trusted applications. A secured computing platform is a computing infrastructure that provides a variety of hardware-supported security functions. Although trust, trusted, and trustworthiness are hardly defined, it is hoped that trusted computing platforms with resulting improvements in the security of computing infrastructure and applications will enable trustworthy applications and systems [1].



# International Journal of Advanced Research in Science, Engineering and Technology

### Vol. 9, Issue 8, August 2022

Trust in the embedded systems is a combination of people, process, and technology. It may be seen far from being a technical concern; however, in most cases the culprit is often engineers going down to the technical details. The users of the embedded systems often have some means to access the information and this has to be carefully dealt with, as irrespective of the strength of the authentication technique, it is largely evident that the user has a major role in knowledge building on the use and reuse of the authentication method. Technology is another major component of trust, where it can play a significant role in securing the processes and information through automated tools, and automated machine-learning methods that can track and object to anomaly.

IoT has already turned into a serious security concern that has drawn the attention of prominent tech firms and government agencies across the world. The hacking of baby monitors, smart fridges, thermostats, drug infusion pumps, cameras and even the radio in your car are signifying a security nightmare being caused by the future of IoT. So many new nodes being added to networks and the internet will provide malicious actors with innumerable attack vectors and possibilities to carry out their evil deeds, especially since a considerable number of them suffer from security holes.

Support vector machines (SVMs) are powerful yet flexible supervised machine learning algorithms which are used both for classification and regression. SVMs have their unique way of implementation as compared to other machine learning algorithms. Lately, they are extremely popular because of their ability to handle multiple continuous and categorical variables. This study intends to enhance Data Security in medical information systems using the Internet of Things (IoT), Artificial Neural Networks and Support Vector Machine (SVM).

#### II. RELATED WORKS

A hybrid security model for securing the diagnostic text data in medical images was researched by [2]. Their model was developed through integrating a steganography technique with a hybrid encryption scheme. The hybrid encryption scheme was built using a combination of Advanced Encryption Standard, and Rivest, Shamir, and Adleman algorithms. This model proved its ability to hide the confidential patient's data into a transmitted cover image with high imperceptibility, capacity, and minimal deterioration in the received stego-image. However, analysis of the study showed that the authors failed to implement their design in a way that a patient can have access to his medical records for further clarification and understanding.

[3] looked at Software Security Durability. The study discussed the definition and classification of existing security factors. For software, identified that security factors are affected with durability and discussed about software security factors with object-oriented design properties and how it can be done. However, they were unable to carry out additional survey to quantify the specific effects of language type on usage.

Machine Learning Algorithms: A Review. In the study, various machine learning algorithms were discussed by [4]. The algorithms were used for various purposes like data mining, image processing, predictive analytics, etc. to name a few. However, the authors failed to implement the reviewed machine learning algorithms with a machine learning model which would have provided more clarification and understanding.

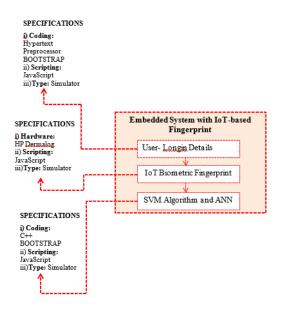
[5] looked at Deep Learning for Computer Vision: A Brief Review. The study provided a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. However, the discussed deep learning algorithms were not implemented with a model for further clarification and understanding.

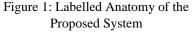
[6] researched on how IoT Applications in Healthcare Devices has helped healthcare professionals to monitor and diagnose several health issues, measure many health parameters, and provide diagnostic facilities at remote locations. This has transformed the healthcare industry from a hospital-centric to a more patient-centric system. However, they failed to provide a secured means of computing health data of patients 'medical information.



# International Journal of Advanced Research in Science, Engineering and Technology

### Vol. 9, Issue 8, August 2022


### **III. MATERIAL AND METHODS**


#### A. Methodology

Object-Oriented System Development Methodology (OOSDM) is a technical approach for analyzing and designing an application, system, or business by applying object-oriented programming, as well as using visual modeling throughout the software development process to guide stakeholder communication and product quality. This research work will be achieved following the Object-Oriented System Development Methodology (OOSDM). This is aimed at viewing, modeling and implementing the proposed system as a collection of interacting classes and objects. OOSDM is adopted because it is more effective, efficient, reliable, reusable and a faster way of developing systems.

#### B. Proposed System

The Improved Data Security System will integrate fingerprinting in the computing of patients' medical records after an ailment has been detected; and further secure trust in the process. This is because the Internet of Things (IoT) is already one of the dominating technologies presently due to the fact that it enables communication by making networking accessible anytime, anywhere. Security for IoT will be given more focus as the principle needs to unite different technologies and have to communicate with diverse kind of networks. The anatomy of the proposed system architecture is depicted in figure 1.





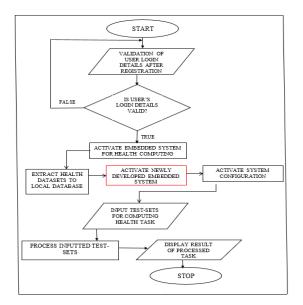
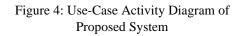



Figure 2: Flowchart of the Proposed System




# International Journal of Advanced Research in Science, Engineering and Technology

### Vol. 9, Issue 8, August 2022

|         |                                                                           | Start                                              |
|---------|---------------------------------------------------------------------------|----------------------------------------------------|
| Step 1: | Start                                                                     | Start                                              |
| Step 2: | Initialize input and output layers of Neural Networks for training Models | Initialize System                                  |
|         | Input=0                                                                   |                                                    |
| Step 3: | Increment Input                                                           | Login/Validation                                   |
|         | Input=Input+1                                                             |                                                    |
| Step 4: | Access Learning Rate of Model Weight                                      | Activate Embedded<br>Svatem and Input<br>Test.zets |
|         | $W_i^{n+1} = w_i^n + \underline{n}(\underline{y}_i - y_i) x_i$            | System<br>User                                     |
| Step5:  | Test Learning Rate of Model Weight                                        | Process Inputted<br>Test sets                      |
| Step 6: | Transfer learned model to output layer of Neural Networks                 |                                                    |
| Step 7: | End                                                                       | View displayed<br>results                          |

Figure 3: Artificial Neural Network Algorithm for training the Proposed System



An ANN is an efficient data-driven modelling tool which is widely used for nonlinear systems dynamic modelling and identification, due to their universal approximation capabilities and flexible structure that allow capturing complex nonlinear behaviours. Feed-forward multi-layer perceptron ANNs type is frequently used in engineering applications. Furthermore, Artificial Neural Network (ANN) uses the processing of the brain as a basis to develop algorithms that can be used to model complex patterns and prediction problems. In addition, Figure 4 shows the ANN application process to the training of the Proposed System.

1. Datasets

This section discusses the means collecting all the information for training and testing the Proposed System and managing it in a way that maximizes the speed and comprehensiveness with which critical information can be extracted, analyzed and used.

2. Training Set

The training set was adopted during the learning process of the proposed system as illustrated in Figure 2, figure 3 and figure 4 respectively. Furthermore, a supervised learning algorithm looks at the training dataset to determine, or learn, the optimal combinations of variables that will generate a good predictive model. The goal of the training process is to produce a trained (fitted) model that generalizes well to new, unknown data. The fitted model is evaluated using "new" examples from the held-out datasets (validation and test datasets) to estimate the model's accuracy in classifying new data.

3. Test Set

The test set is independent of the training dataset, but follows the same probability distribution as the training dataset. If the proposed system fits to the training set, it also fits the test. Furthermore, a better fitting of the training dataset as Copyright to IJARSET www.ijarset.com 19590



# International Journal of Advanced Research in Science, Engineering and Technology

### Vol. 9, Issue 8, August 2022

opposed to the test dataset usually points to overfitting. In addition, the test set is used only to assess the performance of the proposed system.

C. Advantages of the Proposed System

The benefits of the Proposed System are:

1. Enhanced trust and security in embedded system computing.

2. A graphical user interface that allows the administrator to mark diseases for detection, choose the detection methods to be applied to each diagnosis/subtype and manage the list of epidemiologists that will receive alerts in case a warning is generated. The settings are stored in a local database that is also accessed by the other two components.

Furthermore, the system can be administered by multiple users who access the same local database. When additional reports arrive, the original case report is automatically updated with the new information. Depending on the number of days that have elapsed since the last time a patient received a particular diagnosis, a new case report might be created for the same diagnosis and patient. In addition, the proposed system would help in improving the future embedded systems especially in IoT.

### **IV. SIMULATION & RESULTS**

|     | Table 1: Proposed System Result |                        |                             |                                            |                                        |                                   |     |                    | Table 2: Proposed System Result (Contd.) |                 |                                        |                               |                                   |  |  |  |
|-----|---------------------------------|------------------------|-----------------------------|--------------------------------------------|----------------------------------------|-----------------------------------|-----|--------------------|------------------------------------------|-----------------|----------------------------------------|-------------------------------|-----------------------------------|--|--|--|
|     |                                 |                        |                             |                                            |                                        |                                   | SN. | NAME               | BLOOD                                    | LOCATION        | DATE OF                                | TRACE                         | SYSTEM                            |  |  |  |
| SN. | NAME                            | BLOOD<br>GROUP         | LOCATION<br>LAST<br>VISITED | DATE OF<br>LAST<br>MEDICAL<br>CHECK        | TRACE<br>RATE OF<br>DISEASE<br>SYMPTOM | SYSTEM<br>INTERPRETATION          |     |                    | GROUP                                    | LAST<br>VISITED | LAST<br>MEDICAL<br>CHECK               | RATE OF<br>DISEASE<br>SYMPTOM | INTERPRETATION                    |  |  |  |
|     |                                 |                        |                             |                                            | (%)                                    |                                   | 21  | Emma Matt          | $O^+$                                    | Abuja           | 23 <sup>rd</sup> January,              | (%)<br>14                     | No Disease Detected               |  |  |  |
| 1.  | Felix Kamsy                     | 0                      | Rivers                      | 15 <sup>th</sup> June, 2017                | 72                                     | Heart Disease Detected            |     |                    |                                          |                 | 2020                                   |                               |                                   |  |  |  |
| 2.  | Nkitu Jackson                   | 0+                     | Jos                         | 8 <sup>th</sup> February,<br>2019          | 91                                     | Diabetes Detected                 | 22  | Savior Ethan       | <b>O</b> <sup>+</sup>                    | Aba             | 13 <sup>th</sup> February,<br>2020     | 48                            | Bronchitis Detected               |  |  |  |
| 3.  | Maxwell<br>Thompson             | <b>O</b> <sup>+</sup>  | Akwa-Ibom                   | 22 <sup>nd</sup> May, 2015                 | 74                                     | Diabetes<br>Complications         | 23  | Ahmed Anxila       | $\mathbf{O}^+$                           | Rivers          | 4 <sup>th</sup> November,<br>2010      | 31                            | Emphysemia Detected               |  |  |  |
| 4.  | Ben Ndawele                     | $\mathbf{O}^+$         | Rivers                      | 8th July, 2018                             | 2                                      | Detected<br>Hypertension Detected | 24  | Maria Isaac        | <b>O</b> <sup>+</sup>                    | Rivers          | 10 <sup>th</sup> March,<br>2018        | 32                            | Cancer Detected                   |  |  |  |
| 5.  | Akin Richards                   | O+                     | Rivers                      | 17 <sup>th</sup> October,<br>2018          | 3                                      | Hyperlipidemia<br>Detected        | 25  | Leah Armand        | $\mathbf{O}^+$                           | Rivers          | 6 <sup>th</sup> November,<br>2020      | 42                            | Total Chronic Disease<br>Detected |  |  |  |
| 6.  | Ndak Silas                      | O+                     | Benin                       | 5 <sup>n</sup> June, 2014                  | 89                                     | Arthritis &<br>Muscuskeletal      | 26  | Chizim<br>Okonmah  | $\mathbf{O}^+$                           | Rivers          | 4 <sup>th</sup> February,<br>2016      | 16                            | No Disease Detected               |  |  |  |
|     |                                 |                        |                             |                                            |                                        | inflammation Detected             | 27  | Ella Brendan       | $O^+$                                    | Lagos           | 22 <sup>nd</sup>                       | 35                            | Depression Detected               |  |  |  |
| 7.  | Mabel<br>Nwachukwu              | <b>O</b> <sup>+</sup>  | Calabar                     | 13 <sup>th</sup> February,<br>2020         | 18                                     | No Disease Detected               |     |                    |                                          | -               | December,<br>2020                      |                               |                                   |  |  |  |
| 8   | Kunle Coker                     | <b>O</b> <sup>+</sup>  | Ekiti                       | 4 <sup>th</sup> November,<br>2010          | 44                                     | COPD Detected                     | 28  | Rachel Jumbo       | $\mathbf{O}^+$                           | Lagos           | 5 <sup>th</sup> January,<br>2020       | 69                            | Other Mental health<br>Detected   |  |  |  |
| 9   | Sarah Williams                  | O <sup>+</sup>         | Rivers                      | 17 <sup>th</sup> May, 2020                 | 17                                     | No Disease Detected               | 29  | Bright Anjekan     | $O^+$                                    | Ekiti           | 8th July, 2018                         | 81                            | Hearing loss Detected             |  |  |  |
| 10  | Olivia Duke                     | 0                      | Rivers                      | 13 <sup>th</sup> July, 2016                | 10                                     | No Disease Detected               | 30  | Ifon Samuel        | O <sup>+</sup>                           | Niger           | 17 <sup>th</sup> October,              | 21                            | Influenza Detected                |  |  |  |
| 11  | Nathan <u>Alwell</u>            | <b>O</b> <sup>+</sup>  | Rivers                      | 30 <sup>th</sup> September,<br>2020        | 55                                     | Asthma Detected                   | 31  | Chihu Uche         | O⁺                                       | Bavelsa         | 2018<br>5 <sup>th</sup> June, 2014     | 52                            | Injury Detected                   |  |  |  |
| 12  | Mercy Jackson                   | $\mathbf{O}^+$         | Rivers                      | 3 <sup>rd</sup> September,<br>2020         | 4                                      | No Disease Detected               | 32  | Nnenna Mike        | Ö⁺                                       | Rivers          | 13 <sup>th</sup> February,<br>2020     | 74                            | Oral Health Disease<br>Detected   |  |  |  |
| 13  | Camila<br>Mberekne              | $\mathbf{O}^+$         | Rivers                      | 19 <sup>th</sup> April, 2010               | 8                                      | No Disease Detected               | 33  | Danya Fedink       | $\mathbf{O}^+$                           | Akwa Ibom       | 4 <sup>th</sup> November,<br>2010      | 28                            | No Disease Detected               |  |  |  |
| 14  | Walter Samuel                   | $\mathbf{O}^+$         | Rivers                      | 12 <sup>th</sup> March,<br>2016            | 6                                      | No Disease Detected               | 34  | Mailaika<br>Nkwabi | $\mathbf{O}^+$                           | Delta           | 17 <sup>th</sup> May, 2020             | 19                            | No Disease Detected               |  |  |  |
| 15  | Caitlin Andre                   | O <sup>+</sup>         | Rivers                      | 3rd July, 2010                             | 7                                      | No Disease Detected               | 35  | Lily Errol         | $O^+$                                    | Lagos           | 13th July, 2016                        | 41                            | Reproductive Health               |  |  |  |
| 16  | Grace Amah                      | $\tilde{\mathbf{O}}^+$ | Rivers                      | 14 <sup>th</sup> August,<br>2020           | 20                                     | No Disease Detected               |     | -                  | -                                        | 2               |                                        |                               | Disorder Detected                 |  |  |  |
| 17  | Tayo <u>Adeladan</u>            | 0+                     | Lagos                       | 1 <sup>st</sup> December,<br>2020          | 10                                     | No Disease Detected               | 36  | Frank Eldest       | <b>O</b> <sup>+</sup>                    | Rivers          | 30 <sup>th</sup><br>September,<br>2020 | 17                            | No Disease Detected               |  |  |  |
| 18  | Tubor Akpabio                   | 0                      | Ibadan                      | 27 <sup>th</sup> April, 2011               | 21                                     | No Disease Detected               | 37  | Monday             | <b>O</b> <sup>+</sup>                    | Rivers          | 3 <sup>rd</sup> September,             | 45                            | High Cholesterol                  |  |  |  |
| 19  | Micah Dike                      | <b>O</b> <sup>+</sup>  | Lagos                       | 5 <sup>th</sup> November,<br>2020          | 7                                      | No Disease Detected               |     | Emershan           |                                          |                 | 2020                                   |                               | Detected                          |  |  |  |
| 20  | Haajarah James                  | $\mathbf{O}^{+}$       | Lagos                       | 2020<br>8 <sup>ii</sup> September,<br>2018 | 8                                      | No Disease Detected               | 38  | Ukpong<br>Inimfon  | <b>O</b> <sup>+</sup>                    | Rivers          | 4 <sup>th</sup> September,<br>2019     | 19                            | No Disease Detected               |  |  |  |



# International Journal of Advanced Research in Science, Engineering and Technology

# Vol. 9, Issue 8, August 2022

| Table 3: Proposed System Result (Contd.) |                                    |                                  |                             |                                                                 |                                               |                                           |          | Table 4: Proposed System Result (Contd.) |                                  |                             |                                                          |                                               |                                           |  |
|------------------------------------------|------------------------------------|----------------------------------|-----------------------------|-----------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|----------|------------------------------------------|----------------------------------|-----------------------------|----------------------------------------------------------|-----------------------------------------------|-------------------------------------------|--|
| SN.                                      | NAME                               | BLOOD<br>GROUP                   | LOCATION<br>LAST<br>VISITED | DATE OF<br>LAST<br>MEDICAL<br>CHECK                             | TRACE<br>RATE OF<br>DISEASE<br>SYMPTOM<br>(%) | SYSTEM<br>INTERPRETATION                  | SN       | N. NAME                                  | BLOOD<br>GROUP                   | LOCATION<br>LAST<br>VISITED | DATE OF<br>LAST<br>MEDICAL<br>CHECK                      | TRACE<br>RATE OF<br>DISEASE<br>SYMPTOM<br>(%) | SYSTEM<br>INTERPRETATION                  |  |
| 39                                       | Laila Suleiman                     | <b>O</b> <sup>+</sup>            | Rivers                      | 11 <sup>th</sup> April,<br>2012                                 | 4                                             | No Disease Detected                       | 58<br>59 |                                          | 0+<br>0+                         | Benin<br>Calabar            | 5 <sup>th</sup> June, 2014<br>13 <sup>th</sup> February, | 8<br>49                                       | No Disease Detected<br>Influenza Detected |  |
| 40                                       | Aina Markafi                       | <b>O</b> <sup>+</sup>            | Rivers                      | 17 <sup>th</sup> October,<br>2018                               | 74                                            | Arthritis Detected                        | 60       | 0 Batugho Chris                          | $\mathbf{O}^+$                   | Ekiti                       | 2020<br>4 <sup>th</sup> November,                        | 18                                            | No Disease Detected                       |  |
| 41                                       | Sonia<br>Umuezirike                | $\mathbf{O}^+$                   | Lagos                       | 5 <sup>th</sup> June, 2014                                      | 61                                            | Influenza Detected                        | 61       | l Grace Abraham                          | $\mathbf{O}^+$                   | Rivers                      | 2010<br>17 <sup>th</sup> May, 2020                       | 6                                             | No Disease Detected                       |  |
| 42                                       | Mia Sharief                        | $\mathbf{O}^+$                   | Enugu                       | 13 <sup>th</sup> February,<br>2020                              | 19                                            | No Disease Detected                       | 62       |                                          | 0 <sup>+</sup><br>0 <sup>+</sup> | Rivers<br>Rivers            | 13 <sup>th</sup> July, 2016<br>30 <sup>th</sup>          | 69<br>88                                      | Asthma Detected<br>Hyperlipidemia         |  |
| 43                                       | Mishka Shusiso                     | $\mathbf{O}^+$                   | Ukwa                        | 4 <sup>th</sup> November,<br>2010                               | 15                                            | No Disease Detected                       |          |                                          |                                  |                             | September,<br>2020                                       |                                               | Detected                                  |  |
| 44<br>45                                 | Masha Michael<br>Ugochukwu         | 0 <sup>+</sup><br>0 <sup>+</sup> | Abeokuta<br>Ekiti           | 17 <sup>th</sup> May, 2020<br>13 <sup>th</sup> July, 2016       | 70<br>24                                      | Depression Detected<br>Mental Health      | 64       | 4 Ernest Asuzu                           | $\mathbf{O}^+$                   | Rivers                      | 3 <sup>rd</sup> September,<br>2020                       | 15                                            | No Disease Detected                       |  |
| 40                                       | Ajab<br>Sonia                      | 0 <sup>+</sup>                   | Osun                        | 15 July, 2010<br>30 <sup>th</sup>                               | 24<br>14                                      | Disorder Detected                         | 65       | 5 Emma<br>Ehumadu                        | $\mathbf{O}^+$                   | Rivers                      | 19 <sup>th</sup> April,<br>2010                          | 12                                            | No Disease Detected                       |  |
| 40                                       | Umuezitike.                        | 0                                | Osun                        | September,<br>2020                                              | 14                                            | INO DISEASE Detected                      | 66       |                                          | $\mathbf{O}^+$                   | Rivers                      | 12 <sup>th</sup> March,<br>2016                          | 34                                            | Muscuskeletal<br>inflation Detected       |  |
| 47                                       | Peter Eli                          | $\mathbf{O}^+$                   | Rivers                      | 3 <sup>rd</sup> September,<br>2020                              | 23                                            | Heart Disease<br>Detected                 | 67<br>68 |                                          | 0+<br>0+                         | Rivers<br>Rivers            | 3 <sup>rd</sup> July, 2010<br>14 <sup>th</sup> August,   | 20<br>47                                      | No Disease Detected<br>Myopia Detected    |  |
| 48                                       | Joella <u>Nuigbo</u>               | $\mathbf{O}^+$                   | <u>Akwa</u> Ibom            | 19 <sup>th</sup> April,<br>2010                                 | 22                                            | Cancer Detected                           | 69       | 9 Best Wendy                             | $\mathbf{O}^+$                   | Lagos                       | 2020<br>1 <sup>st</sup> December,                        | 31                                            | Osteoporosis Detected                     |  |
| 49                                       | Pamela Alfred                      | <b>O</b> <sup>+</sup>            | Rivers                      | 12 <sup>th</sup> March,<br>2016                                 | 84                                            | Bronchitis Detected                       | 70       | 0 Friedel Jones                          | $\mathbf{O}^+$                   | Ibadan                      | 2020<br>27 <sup>th</sup> April,<br>2011                  | 13                                            | No Disease Detected                       |  |
| 50<br>51                                 | Sylvia Boma<br>Oke Lucent          | 0+<br>0+                         | Rivers<br>Rivers            | 3 <sup>rd</sup> July, 2010<br>14 <sup>th</sup> August,          | 42<br>52                                      | Diabetes Detected<br>Diabetes Detected    | 71       | l <u>Atuegbu</u><br>Benson               | $\mathbf{O}^+$                   | Lagos                       | 2011<br>5 <sup>th</sup> November,<br>2020                | 90                                            | Preeclampsia<br>Detected                  |  |
| 52                                       | Aghai Barrat                       | $\mathbf{O}^+$                   | Rivers                      | 2020<br>1 <sup>st</sup> December,                               | 50                                            | High Cholesterol                          | 72       |                                          | $\mathbf{O}^+$                   | Lagos                       | 8 <sup>th</sup> September,<br>2018                       | 8                                             | No Disease Detected                       |  |
| 53                                       | Chioma                             | $\mathbf{O}^+$                   | Rivers                      | 2020<br>15 <sup>th</sup> June, 2017                             | 12                                            | Detected<br>No Disease Detected           | 73       | 3 Igwe Benson                            | $\mathbf{O}^+$                   | Abuja                       | 23 <sup>rd</sup> January,<br>2020                        | 80                                            | Heart Disease<br>Detected                 |  |
| 54                                       | <u>Uiowundu</u><br>Duzie Abba      | $\mathbf{O}^+$                   | Jos                         | 8th February,                                                   | 60                                            | Hypertension                              | 74       | 4 Hope <u>Chijindu</u>                   | $\mathbf{O}^+$                   | Aba                         | 13 <sup>th</sup> February,<br>2020                       | 71                                            | Influenza Detected                        |  |
| 55                                       | Caleb Ajuzie                       | <b>O</b> <sup>+</sup>            | Akwa-Ibom                   | 2019<br>22 <sup>nd</sup> May, 2015                              | 19                                            | Detected<br>No Disease Detected           | 75       | 5 Promise Bakare                         | $\mathbf{O}^+$                   | Rivers                      | 4 <sup>th</sup> November,<br>2010                        | 18                                            | No Disease Detected                       |  |
| 56<br>57                                 | Joseph Czar<br>Matthew <u>Qwoh</u> | 0+<br>0+                         | Rivers<br>Rivers            | 8 <sup>th</sup> July, 2018<br>17 <sup>th</sup> October,<br>2018 | 14<br>42                                      | No Disease Detected<br>Influenza Detected | 76       | 6 Temitope<br>Balogun                    | $\mathbf{O}^+$                   | Rivers                      | 10 <sup>th</sup> March,<br>2018                          | 41                                            | Diabetes Detected                         |  |

#### Table 5: Proposed System Result (Contd.)

| SN. | NAME                       | BLOOD<br>GROUP        | LOCATION<br>LAST<br>VISITED | DATE OF<br>LAST<br>MEDICAL<br>CHECK    | TRACE<br>RATE OF<br>DISEASE<br>SYMPTOM<br>(%) | SYSTEM<br>INTERPRETATION |     |
|-----|----------------------------|-----------------------|-----------------------------|----------------------------------------|-----------------------------------------------|--------------------------|-----|
| 77  | Agho Loretta               | $\mathbf{O}^+$        | Rivers                      | 6 <sup>th</sup> November,<br>2020      | (%)                                           | No Disease Detected      |     |
| 78  | Frederick<br>Maduabuchi    | <b>O</b> <sup>+</sup> | Rivers                      | 4 <sup>th</sup> February,<br>2016      | 6                                             | No Disease Detected      |     |
| 79  | Erimkpong<br>Joseph        | <b>O</b> <sup>+</sup> | Lagos                       | 22 <sup>nd</sup><br>December,<br>2020  | 55                                            | Hearing loss Detected    | SN. |
| 80  | Chichiezu<br>Aleruchi      | <b>O</b> <sup>+</sup> | Lagos                       | 5 <sup>th</sup> January,<br>2020       | 41                                            | Hypertension<br>Detected |     |
| 81  | Solomon<br>Akachukwu       | <b>O</b> <sup>+</sup> | Ekiti                       | 8 <sup>th</sup> July, 2018             | 2                                             | No Disease Detected      |     |
| 82  | Joshua<br>Ephraim          | <b>O</b> <sup>+</sup> | Niger                       | 17 <sup>th</sup> October,<br>2018      | 33                                            | No Disease Detected      |     |
| 83  | Ime Essiet                 | 0+                    | Bayelsa                     | 5 <sup>th</sup> June, 2014             | 53                                            | Preeclampsia<br>Detected | 95  |
| 84  | Suanu Abiikor              | 0+                    | Rivers                      | 13 <sup>th</sup> February,<br>2020     | 14                                            | No Disease Detected      | 96  |
| 85  | Akon Rita                  | 0+                    | Akwa Ibom                   | 4 <sup>th</sup> November,<br>2010      | 32                                            | Scoliosis Detected       |     |
| 86  | Edidiong<br>Thomas         | <b>O</b> <sup>+</sup> | Delta                       | 17 <sup>th</sup> May, 2020             | 7                                             | No Disease Detected      | 97  |
| 87  | Wendy<br>Uchechi           | <b>O</b> <sup>+</sup> | Lagos                       | 13 <sup>th</sup> July, 2016            | 6                                             | No Disease Detected      |     |
| 88  | Fred Cebak                 | 0+                    | Rivers                      | 30 <sup>th</sup><br>September,<br>2020 | 51                                            | Arthritis Detected       | 98  |
| 89  | Mirabel <mark>Okoli</mark> | 0+                    | Rivers                      | 23 <sup>nl</sup><br>September,<br>2020 | 4                                             | No Disease Detected      | 99  |
| 90  | Chilioke Festus            | <b>O</b> <sup>+</sup> | Lagos                       | 5 <sup>th</sup> December,<br>2018      | 60                                            | Cataract Detected        |     |
| 91  | Akanimor<br>Michael        | $\mathbf{O}^+$        | Akwa-Ibom                   | 11 <sup>th</sup> July, 2019            | 22                                            | Influenza Detected       | 100 |
| 92  | Bayo Ayodele               | <b>O</b> <sup>+</sup> | Rivers                      | 6 <sup>th</sup> April, 2020            | 6                                             | No Disease Detected      |     |
| 93  | Cyril Akunne               | 0                     | Enugu                       | 23 <sup>rd</sup> June, 2014            | 9                                             | No Disease Detected      |     |
| 94  | Ndidi Elumemi              | <b>O</b> <sup>+</sup> | Benin                       | 31 <sup>st</sup> July, 2017            | 67                                            | Diabetes Detected        |     |

#### Table 6: Proposed System Result (Contd.)

| SN. | NAME             | BLOOD<br>GROUP        | LOCATION<br>LAST<br>VISITED | DATE OF<br>LAST<br>MEDICAL<br>CHECK | TRACE<br>RATE OF<br>DISEASE<br>SYMPTOM<br>(%) | SYSTEM<br>INTERPRETATION |
|-----|------------------|-----------------------|-----------------------------|-------------------------------------|-----------------------------------------------|--------------------------|
| 95  | Stella Okorie    | $O^+$                 | Rivers                      | 31 <sup>st</sup> July, 2017         | `5´                                           | No Disease Detected      |
| 96  | Maryam Dabo      | <b>0</b> <sup>+</sup> | Abuja                       | 20 <sup>th</sup> December,<br>2015  | 44                                            | Depression Detected      |
| 97  | Emmanuel<br>Edet | <b>0</b> <sup>+</sup> | <u>Akwa</u> Ibom            | 13 <sup>th</sup> January,<br>2019   | 17                                            | No Disease Detected      |
| 98  | Loreta Johnson   | 0+                    | Rivers                      | 20 <sup>th</sup> November,<br>2020  | 8                                             | No Disease Detected      |
| 99  | Akan Joshua      | 0 <sup>+</sup>        | Rivers                      | 23 <sup>rd</sup> March,<br>2019     | 65                                            | COPD Detected            |
| 100 | Christy King     | $\mathbf{O}^+$        | Bayelsa                     | 11 <sup>th</sup> June, 2020         | 56                                            | Asthma Detected          |



# International Journal of Advanced Research in Science, Engineering and Technology

### Vol. 9, Issue 8, August 2022

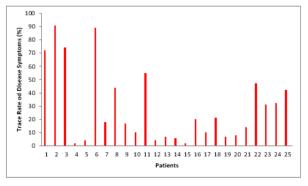



Figure 5: Proposed System Result Chart (Patients: 1-25)

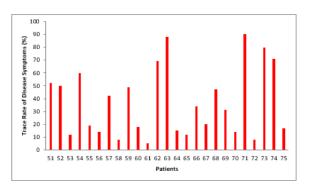



Figure 7: Proposed System Result Chart (Patients: 51-75)

#### Table 7: Comparative Analysis of the Existing and Proposed Systems

| SN. | RESULT PARAMETERS FOR               | VAL      | VALUES |  |  |  |
|-----|-------------------------------------|----------|--------|--|--|--|
|     | COMPARISON                          | Existing | -      |  |  |  |
|     |                                     | System   | System |  |  |  |
| 1.  | No. of Adopted Algorithms           | 1        | 1      |  |  |  |
| 2.  | No. of Adopted Methods              | 1        | 1      |  |  |  |
| 3.  | No. of Adopted Technologies         | 1        | 2      |  |  |  |
| 4.  | No. of Created Databases            | 1        | 1      |  |  |  |
| 5.  | No. of Implemented Hardware Devices | 0        | 1      |  |  |  |
| 6.  | No. of Tested Records               | 50       | 100    |  |  |  |
| 7.  | Trust                               | 47       | 95     |  |  |  |
| 8.  | Security                            | 69       | 100    |  |  |  |
| 9.  | Confidentiality                     | 65       | 90     |  |  |  |
| 10. | Privacy                             | 72       | 100    |  |  |  |

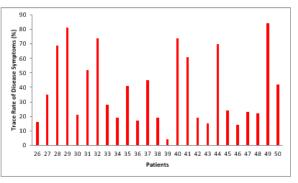



Figure 6: Proposed System Result Chart (Patients: 26-50)

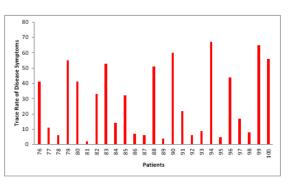
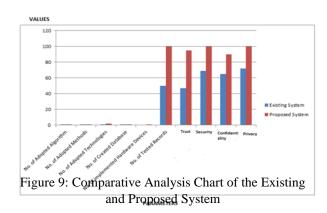




Figure 8: Proposed System Result Chart (Patients: 76-100)





# International Journal of Advanced Research in Science, Engineering and Technology

### Vol. 9, Issue 8, August 2022

#### **IV. DISCUSSIONS**

Tables 1 to Table 6, show the result obtained from the proposed system and figure 5 to figure 8 shows the charts of the obtained result. Table 7, show the comparative analysis and performance evaluation of the existing and proposed system. Parameters of the result for both systems encompassed the number of adopted algorithms, the number of adopted methods, the number of adopted technologies, the number of created databases, the number of implemented hardware devices, and the number of tested records, trust, security, confidentiality, and privacy. The result values based on the mentioned parameters are 1, 1, 1, 1, 0, 50, 47, 69, 65, and 72 respectively, while that of the existing system is 1, 1, 2, 1, 1, 100, 95, 100, 90, and 100 respectively. In other words, performance evaluation of both systems based on the mentioned parameters clearly showed the Improved Data Security on medical information system of the proposed system performed better than the existing system as shown in figure 9. This IoT fingerprint scanner makes the system extra secure because access to a user's health information is confidential to the user alone and can only be accessed by the user after login with a username, password and biometric fingerprint identification have been verified. The adopted AI technic by the proposed system encompassed the hybrid of Support Vector Machine (SVM) and Artificial Neural Network (ANN). The role of ANN and SVM encompassed making the proposed system robust and more intelligent than the existing system. Furthermore, we evaluated the integrity and accuracy of the new system by judging it on the four main IoT parameters which are Trust, Security, Confidentiality and Privacy.

#### **V. CONCLUSION**

Trust has always been an issue in embedded system computing due to frequent security lapses and compromise. The study covered health disease tracking using secured biometric internet-of-things. Due to the recent Covid-19 pandemic that ravaged the entire world, the tracking of potential patients has been done via embedded systems. However, most patients are reluctant to determine their health status via embedded systems due to insecurity and issues of confidential health information leakage. Furthermore, most embedded systems for disease tracking where user input is taken as text focus only on symptom to disease relationships. The study covered only the secured tracking and authentication of health-related data using a biometric fingerprint device. In addition, the study was only able to obtain few cases of detected health related issues for the proposed embedded model to process. This was as a result of confidentiality concepts exhibited by the relevant health institutions.

#### REFERENCES

- [1] F., David, "Principles of trust for embedded systems". Software Engineering Institute. http://www.sci.cmu.edu, 2012.
- [2] M., Elhoseny, G., Ramírez-González, O., Abu-Elnasr, S., Shawkat, N., Arunkumar, & A., Farouk, "Secure medical data transmission model for IoT-based healthcare systems," IEEE Access, 6, 20596-20608. doi: 10.1109/access.2018.2817615, 2018.
- [3] K., Rajeev, K., Suhe, I, & k., Raees, "Software security durability". International Journal of Computer Science & Technology, Vol. 5, no 2, pp.23-27, 2014.
- [4] D., Ayon, "Machine learning algorithms". A review. International Journal of Computer Science & Information Technologies, Vol. 7, no 3, pp.1174-1179, 2016.
- [5] V., Athanasios, D., Nikolaos, D., Anastasios, & P., Eftychios, "Deep Learning for Computer Vision: A Brief Review". Hindawi Computational Intelligence & Neuro-Science. https://doi.org/10./155/2018/7068349, 2017.
- [6] P., Bikash, B., Saugat, & P., Kunal, "IoT-based applications in healthcare devices". Journal of Healthcare Engineering. https://doi.org/10.1155/2021/6632599, 2020.