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ABSTRACT: In this paper, we give a survey on some recent results on the volume of n-ball in the Euclidean space R™.
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. INTRODUCTION

The n-balls or spheres in the Euclidean spaces is a basic object in mathematics. In calculus, geometry, topology,... the n-
. . . . 4
balls appear in many examples. In 2-dim spaces, we have the area zR?, in 3-dim spaces, we have the volume §7Z'R3.

But in higher dimension spaces, there is no way to draw the n-balls. Therefore, it is difficult to image them and compute
their volume is not trivial problem.

How to compute their volume? And how small the n-ball when n tends to infinity? These are natural questions. It is well-
known how to use the gamma function to compute the are or volume of an n-ball of the radius R. Many authors try to
answer the above questions by different methods.

Firstly, we have the following definition of n-balls in the Euclidean R™.

Definition 1.1 The set
B,(R): = {(x1, -, Xp) € R*|x? + x% + -+ x2 < R?},

where R is a positive number, is called a n-ball with radius R in the Euclidean space R™,n > 1.
1. Wheren =1, B;(R) is the interval [-R; R].
2. Wheren = 2, B,(R) is the circle with center 0(0; 0) and radius R:

B,(R): = {(x1,x,) € R?|x? + x? < R?}.
3. Where n = 3, B5(R) is the sphere (ball) with center 0(0; 0; 0) and radius R:

B3 (R): = {(x1,x3,%x3) € R3|x? + x2 + x2 < R?}.
There is an improtant problem: Compute the volume of the n-ball B,,(R).

There are many results on this problem, for instance, see [1,2,3,5,6]. Moreover, in [4], the authors compute the volume
of n-simplex.

In this paper, we will study some methods in computing the volume of n-balls in the Euclidean spaces and we give a
survey on the methods. These methods we refer in [1,3,4,5,6]. They are not new results.

The paper is organized as follows. Section Il is preliminaries. Section 111, we recall some methods in computation of the
volume of n-balls in the Euclidean spaces.
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1. PRELIMINARIES

In this section, we recall the notions and some properties of Gamma and Beta functions.

e  The Gamma function (Euler):

r'(z) = f et t?"1dt,Rez > 0.
0

e The Beta function:

1

B(p,q) = J xP71 (1 —x)9 1dx.

0

We have some properties of the Gamma and Beta functions:

1. I'(z+1)=2zI(z),Rez > 0.

2. 'n+1)=nlvéin=0,12,...

3. rG =

4. I'(x+1) ~+2nx(x/e)”*, (x = o).
_ror@

5. B(p,q) = e

6.

B(p,q) = B(q,p).

Note that Property 4 is the Stirling formula in calculus.

1. THE VOLUME OF N-BALLS IN THE EUCLIDEAN SPACES

Theorem 3.1. The volume of the n-ball, with the radius R, is the following formula:

Tl’n/an

Oy

We give here 3 methods to prove Theorem 3.1.

The method 1 (see [1])
We take R® = R""2 x R2. Then (x4, ..., x,) € B, (R) if and only if

xPH+xZ 4+ xi, +xi +x2<R?
this is equivalent to

xf+xZ4+ -+ xi, S R*—x2_, —x2

Hence,
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V., (R) =J. dx;dx, ...dx,
Bn(R)

= (J. d
Lz(R) Bn_z(/RZ—x%_l—x%)

Xq e dXp_p)dx,_1dx,

By the induction, we have:

T (=2)/2

V,(R) = f (R? = x2_, — x2)"D2dx, . dx,.
B2 (R)

r2+1)
By using the polar coordinates, we have

n(=2)/2

re)

Zn.n/z R™ 7.L.n/ZRn

2m R
d ef (R? —t?)(=2/2¢qt = —=
fo 0 re)y n rGg+

The method 2 (see [5])

Since R® = R*! x R, we have

V,(R) =f dx,dx, ..dx,
Bn(R)

f ( dxg..dx,_1)dx,,
Bi(R) “Bp—1(|R?-x3)

by the induction, we obtain

Z(=1/2 R
W(R) = [ (R? =P,

I +1) )
zn.(n—l)/Z R
) Jo
put x,, = R+/t, we have
2n(n—1)/2 R™ 1
V (R) = —_f (1 _ t)("_l)/zt_l/zdt
' res) 2
r-D/2 411
=R'"— B3
e

n+1

L COIG)
ré g+

n.n/an

Since F(i) = /2, we obtain V,(R) =

rG+1’
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The method 3 (Lasserre’s method)
Lasserre considered a functional and use the Laplace transform to prove the theorem (see [4]).

Let consider f: R* - R*,

yofoy=| dx

llxl2<y

This function is the formula of the volume of sphere with radius \/5 Let consider the Laplace transform F: C —» C
which is defined by:

(o0}

zeo F(z):= f e ™ f(y)dy,z € C,Re(z) > 0.
0

Then we have

F = —zy dx]d
2 J:) ¢ [Jllxllzsy *1dy

=f [J e ? dyldx
R™ Jlix)1?

_ _ 2
=z 1J. e AIXI% dx

Rn
n
*© 2
=z1 f e %% dx;
=1 T®

z‘l[;r/z]n/2

= z~n/2-1;7n/2 — n"/? .F(n/Z +1)
r(n/2+1)  zn/2+1

It is easy to see that F;ﬁ:f Yisan image of the Laplacian transform of y™/2, i.e.
rm/2+1) 5
ozl LO™?).
Therefore,
n/2
— n/2
T = Faz+n”

By the properties of the Laplacian transform, we have:
LH=L@)=f=g

The theorem is proved.

We have the following consequence.

Corollary 3.2.

For R > 0, ii_r)gov,'q(R) = 0.

It is easy to prove the corollary by using Stirling formula (Property 4).
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Moreover, some works give results on the volume of balls in the complex spaces [J " For instance, we recall Hijab’s
result (see [2]).

Theorem 3.3. (Hijab [2])
The volume of the unit balls
B ={(z1,...,2y) €EC":|z;|?> + - + |z,]* < 1}
ist™/nl.
Consequently, we have, rlll_{rgo V,(B) = 0.
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