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ABSTRACT: The article presents the synthesis algorithms of adaptive control systems with a reference model for 

objects with input delay based on a simple filter. The synthesis procedure is based on the concept of forecasting a 

reference model using advanced inaccuracy. In this case, the structure of control devices uses simple filters and only 

blocks with concentrated delay, in contrast to the known configurations with distributed delay. 
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I. INTRODUCTION 

 

One of the modern tasks in the theory of automatic control is the development of an adaptive control system for 

dynamic objects with distributed delay. Chemical and energy systems are the most typical examples of delayed systems. 

Such delays not only limit the synthesis of systems with typical control laws, but can also act as a source of instability 

of closed systems. Since the practical value of any control law is its operability, there is a need to search for such an 

algorithm for the functioning of the system that would solve the problem posed to the specialist, and therefore, special 

methods of the theory of adaptive control are used. 

 

II. RELATED WORK 

 

The problem of controlling systems with a delay under uncertainty was solved by many authors in the class of adaptive 

systems [1 - 5]. Most of the proposed solutions for the synthesis of adaptive control algorithms for such systems were 

based on the use of distributed delay blocks [6-8], which are technically difficult to implement. In this article, to control 

systems “one input - one output” with a delay at the input, we propose the structure of a control device using a simple 

filtering scheme [9,10]. 

 

III. FORMULATIONOFTHEPROBLEM 

Consider a class of controlled systems whose dynamics is described by a linear differential equation with input delay: 

Consider a class of controlled systems whose dynamics is described by a linear differential equation with an input delay: 
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where 
nRx  – is the state vector, Ru  – is the control input, Ry – is the measured output of the object. The 

constant matrix    and vectors   ,    of corresponding sizes are unknown,   is the known delay time. 

Denote by  0( ) the transfer function of system (1) and obtain: 
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where  ,   are the orders of polynomials ( < ); 
   1,0,1,0  mjbnia ji  - unknown coefficients of 

polynomials;    - unknown gain of the object at high frequencies. 

The reference model can be set in the form: 
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where 
1n

Rmx
 is the state vector of the model, Rr  is the defining influence, 

Rym   is the measured output 

of the model. The constant matrix    and vectors   ,    of corresponding sizes are known. Accordingly, the transfer 

function of the reference model   ( ) is determined by the expression: 
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where mk
 is the model gain, the polynomials   ( ) and   ( ) have an object-like structure. 

It is required to find such a control law   ( ) that provides the asymptotic zeroing of errors  ( ) =  ( ) -   ( ) for 

arbitrary initial conditions and arbitrary bounded signals  ( ). Thus, the target condition for the control system takes the 

following form: 

       .0lim 


tytyte m
t      (6.) 

 

IV. SOLUTION OF THE TASK 

 

Suppose that all parameters of system (1) are known. To control a stable minimum-phase object with input delay (1), 

we use the open-loop control strategy for systems without delay [10]. We will use a filtering scheme of minimal 

complexity modified for the case of input delay. 

Represent the transfer function of the object  0( ) in the form: 
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where   ( ) is an arbitrary stable polynomial with real unequal roots: 
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here  .,,1,,1,0 ijmjmijii    

The polynomial  s  from (7) has the following form: 
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here   =  ∗-1.  
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The constant coefficients  miNjiij .1,,0,,   - are uniquely determined through the initial parameters of 

the object (2) and the parameters of the polynomial  ( ) (through the parameters 

     mkmjbnia kji ,1,1,0,1,0   ). 

Imagine the reference model in the form: 
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here  sR  is an arbitrary stable polynomial of degree  ∗: 
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Proceeding from this, we introduce an arbitrary stable polynomial   ( ) with real unequal roots of the form 
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here  .,,1,,1,0 ijmjmijii    Expanding the polynomial 
   
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 into simple fractions we 

get: 
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Obviously, as in the case of an object, the coefficients  Nii ,0  are uniquely determined through the initial 

parameters of this object  Njj ,0  and the parameters of the polynomials  ( ) and  ( ). For simplicity, we set 

the polynomial  ( ) in the form: 
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where  > 0 is an arbitrary time constant. Given the introduced notation, the equation of the perturbed motion of the 

system with respect to the error   takes the form: 
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If the control law is chosen in the form: 
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then, taking into account (7) and (13), the equation of the control device (15) will take the following form: 

 
 

   
 ,

1

0

0
su

sRsB

sA

k
su r

p

      (16)   

Since  0( ) and  0( ) are Hurwitz, the control law (15) will ensure exact correspondence of the transfer functions of the 

object and the reference model. 
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In accordance with [10], for use in open control, we introduce the following filtering scheme for signals 
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where 
mmNN RR   21 , – are the diagonal matrices of constant coefficients of the form: 

    ,,1,,,1, 21 mjdiagNidiag ji    

mN RhRh  21 ,  unit vectors. Note that the total order of the filtration system (17) corresponds to 2  +   + 1 =   

+  . 

This shows that the lead signal of the deterministic reference model   (  +  ∣ ), used in (17) to form a vector, can be 

easily obtained by passing the signal   ( ) through the transfer function of the reference model   ( ) without taking 

into account temporary lag. 

Further, it can be argued that in accordance with (15) and (17) there exists such a block vector
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provides full coincidence of the transfer function of the object and the reference model. 

We consider the synthesis of the control algorithm for the case when the excess of poles of the transfer function of the 

object  ∗=1 ( ( ) = 1). We set the law of adaptive control in the form: 

   ttu mpr
T ,      (19) 

where 
 1 mпR  is the vector of adjustable parameters. 

Let    =   −     and    =   −   , , then we get the equation for the mistakes: 
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The equation for the error  ( ), taking into account (19) and (20), will take the form: 
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where 11
ˆˆ

uu BB  . The transfer function of this system without taking into account the time delay is strictly positively 

valid and is defined as: 
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Set the extended error signal as 
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where    is the output of the auxiliary model, which is defined by the equation: 
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where y  is the control input of the auxiliary model, which will be defined below. 

The new management goal is defined as: 
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this will fulfill the original control goal (6). 
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From this we get: 
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Thus, the use of equation (17) for the auxiliary model    leads to the control: 
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The transfer function of system (21) without taking into account the time delay is strictly positively real, then using the 

Kalman – Yakubovich lemma [11] there are 0 TPP  and 0 TQQ  such that the following conditions are 

always satisfied: 
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If the algorithms for tuning the parameters )(t  and  )(t  are determined by the expressions: 
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then the total time derivative of the Lyapunov function, taking into account (33), has the form 
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Thus, [12], the adaptive control (19) and the tuning algorithm (34) guarantee that   ( ), and therefore, the 

    )()(,, tuttetE aa   signals are bounded, i.e.     LtttetE aa )(,)(,,  . From (35) we establish that 
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Where
 ,  is the constant vector and number. This means that, in accordance with (21), all signals in a closed 

system are bounded. If the signal  ( ) is such that the object is identifiable [13,14], 


then in accordance with 

(21) we obtain the fulfillment of the original goal of the functioning of system (6). 

 

V. CONCLUSION 

 

Application of this scheme allows reducing the number of adjustable parameters in the adaptive controller to the 

number of unknown coefficients in the system. The proposed adaptive control structure contains only blocks with a 

concentrated delay, which simplifies the practical implementation of such systems. 
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