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ABSTRACT: Stable adaptive estimation algorithms are given with adjustment of noise covariance matrices in the 

object and measurement interference based on the Gauss-Newton recurrence-iteration procedure. Approximations of 

the functional under consideration are given, replacing the nonlinear least squares problem with the corresponding 

linear problem. Proposed algorithms allow adaptive filtering of linear object at unknown intensities of input signals, 

disturbances in object and noise of measurements. 
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     I.INTRODUCTION 

 
In the problem of linear filtration at the final time interval, the Kalman filter has proved to be an effective 

means both in stochastic conditions with stationary noise and in minimal staging [1-3]. Luenberger observers, built 

without taking into account the properties of perturbations, but only for the stability of the observation system, give 

significantly worse results both in computer modeling and in applied problems. The Kalman filter indicates a method of 

calculating the filter gain, well matched with all the properties of the object - the coefficients of the model equations 

and the matrices of perturbation covariances in the object and noise in the measurement. 

In a number of applications, the least reliable information about the linear model is the properties of noise in 

the object and interference in the measurement. Particularly important is the ratio of dispersions   of these processes 

[2]. If the perturbation in the object is significantly less than the measurement noise )1(  , then the Kalman filter 

gain will be relatively small, which leads to smoothing of the measurements. On the contrary, if the measurement 

interference is small )1(  , then the gain is relatively large and it is said that the filter "believes" the 

measurements. The RMS estimation error depends to a large extent on the nature of the smoothing of the filter, 

manifested in the number of recent measurements that significantly affect the current estimate. For multidimensional 

disturbances or noises, cases of large and small   can be combined in different ways. 

It can be shown [2,3] that in the case of  a stationary  model with known coefficients, any stable Luenberger observer with  a  matrix from the object 

equation is a Kalman filter. Therefore, the use of the Kalman filter loses meaning in the absence of information about these matrices. Setting the tasks of 

evaluating linear systems with unknown matrices of disturbance covariances in the object and measurement noises can be very diverse. The specifics of the 

application may suggest the most appropriate mathematical model. 

 

Methods of guaranteed estimation [5-7] provide the upper boundary of the quality indicator for all disturbances in the object and noise of 

measurement from a given class, and also minimize this boundary. Their advantage is the absence of random errors that can accompany adaptive tuning, as 

well as the ability to calculate the filter in advance. Disadvantages of guaranteed filtering are manifested in excessive conservativeness if the permissible set of 

parameter values is too wide. 
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Methods of nonlinear filtering  and Bayesian estimation  of  model parameters are very diverse [8]. Model parameters are evaluated using a 

suitable set of statistics generated from incoming measurements. Efficient numerical implementation is achieved by proper parameterization and finite-

dimensional approximation, including filter banks. 

In [1,8,9] discusses various algorithms for adaptive filtering of systems with unknown constant parameters. These parameters can be values of 

perturbation covariance matrices. The presented decision algorithms refer either to the case of a finite set of values of an unknown parameter, or to the case of 

the existence of a probabilistic distribution of an unknown parameter, which can be used in Bayesian formulas. 

Algorithms for adaptive estimation of perturbation covariance matrices in linear stationary systems were studied in [4, 10]. In the case of scalar 

measurements and scalar disturbance in the object, an asymptotically accurate estimate of the ratio of disturbance dispersions in the object and measurement 

noise is obtained in [4]. A generalization to a multivariate case is presented in [10] assuming that the measurement noise covariance matrix is known. 

 

Let the observation object be described by a linear model: 
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 . Hereinafter, the consistency of the set   with the measurements y  means that the linear object with 

the perturbations )(
t

w  and the measurement noise )(
t

v  of the set   has the same output as )(
t

y . All matched sets 

  form an affine space. To select one set and therefore one model, enter a quality measure. Let in an arbitrary model 

)(TR  - be a covariance matrix of the prediction error of the last dimension 
1/
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measure of this model can then be defined as 

),)(()( SRtrF T    

where S  - is some non-negative defined matrix with coefficients reflecting the weight of different components of 

vector 
T
 . This quality indicator is selected for the following reasons [9-11]: in different stochastic models of the 

observed object, it gives a filter gain close to the optimal; there are effective algorithms for minimizing it; it takes into 

account the accuracy of evaluation at the last moment of time, which is important in application to management tasks. 

Let 
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   - be a set of vectors in 

NR . Then [11] among all normal distributions in 
NR  with zero 

mean, the maximum probability density on the set of   implementations of independent random variables with this 

distribution is achieved with a matrix of covariances  
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The functional )(J  is completely defined by the covariance matrix  
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the dimension of which is independent of T . Function F  can be minimized by various methods, for which it will be necessary to calculate its partial 

derivatives over all elements 


. We will use the Gauss-Newton iterative algorithm as one of the effective methods for minimizing the function of many 

variables [12-18]. 

The Gauss-Newton method, which allows the current point с  to find the next point  , is based on the 

approximation of the function )(F  in the vicinity of the current point с  by its affine model 

  )()())(()()( cccccc JFJFM  

and corresponding replacement of the nonlinear least squares problem with the linear least squares problem of the form 

[13-15]: 

2/2/)()(2/)(
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where 
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)()(   ccc JF  – is a misalignment of equation 
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here J  – is the Jacobi matrix of the vector function ),...,( 1 mffF  : 
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In rare cases, the matrix )( cJ   of equation (2) is square and non-degenerate; in these cases, its only solution 

)()(1
cc RJ   ,   c      (3) 

is the solution of problem (1) with zero non-binding [14]. 

More often there are cases when matrix 
nm

c RJ )(  is a matrix of general form, but the condition of 

compatibility of equation (2), having the form: 

)()()()( cccc FFJJ  
     (4) 

wherein 
mn

c RJ  )(  – is pseudo-inverse to matrix )( cJ  . Note [12-14] that if equation (2) is rewritten in 

equivalent form: 

)()()( cccc FJJ   , 

that condition of its compatibility 

)()()]()()[()( cccccccc FJFJJJ  
, 

given property JJJJ 
, it is equivalent to condition (4). 

Then the solution of equation (2) is:  

yJJIFJ cccc )]()([)()(    ,    c    (5) 

This solution is the only one if the condition is met along with (4) 

IJJ cc  )()(  , 

and is recorded as 

)()( cc FJ   ,   c .     (6) 

In other cases, the choice of a single solution from (5) is subject to some additional requirements; such is, for 

example, the requirement [14-16]: find 

min , yJJIFJ cccc )]()([)()(    .   (7) 

The solution of problem (2), (7) is called normal; it is also recorded as (7). 
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The most real cases are when the matrix )( cJ   has a general form and condition (4) is not fulfilled, so that 

the solution of equation (2) does not exist. It is well known [13-18] that even in these cases the ratio (5) provides a 

solution to the problem (1), and the ratio (6) provides a solution to the problem (1), (7); for equation (2), they serve as 

general and normal pseudo-solutions, respectively. They, in the Gauss-Newton method, determine the main step of the 

iterative procedure, usually written in the form: 

)()(])()([ 1
cc

T
cc

T FJIJJ   ,   c , 

where 0  – is the regularization parameter, I – is the unit matrix. 

The basis is usually taken as a more general and brief entry (6), as well as better adapted for the formulation of 

recurring procedures. 

Proposed algorithms allow adaptive filtering of linear object at unknown intensities of input signals, 

disturbances in object and noise of measurements. 
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