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ABSTRACT: The most of time series observed from our life are nonstationary, often exhibiting trends, which can be 

seen in several forms. Such trends often removed by differencing the data an appropriate number of times, in which 

case the series is known as an integrated process. This approach was recommended by Box and Jenkins and widely 

used in many research areas. In the paper, a sequence of main steps of Box-Jenkins model is highlighted and 

demonstrated in a case study of Real Gross Domestic Product of US example. Several simple cases of the ARMA 

model are introduced and analyzed followed by building and selecting an appropriate model to explain the evolution of 

an observed time series. 
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I.INTRODUCTION 

 

Time series modeling is a dynamic research area which has attracted attentions of researchers’ community over last few 

decades. The main aim of time series modeling is to carefully collect and rigorously study the past observations of a 

time series to develop an appropriate model which describes the inherent structure of the series. This model is then used 

to generate future values for the series, i.e. to make forecasts. It is obvious that a successful time series forecasting 

depends on an appropriate model fitting. One of the most widely used stochastic modelling approach is ARMA(Auto 

Regressive Moving Average) models. The popularity of the ARMA model is mainly due to its flexibility to represent 

several varieties of time series with simplicity as well as the associated Box-Jenkins methodology [2, 4] for optimal 

model building process. Below, we give brief details of ARMA Box-Jenkins methodology step by step and demonstrate 

the methodology in case study of Real Gross Domestic Product of US example.  

 

II. RELATED WORK 

 

Time series forecasting thus can be termed as the act of predicting the future by understanding the past. Due to the 

indispensable importance of time series forecasting in numerous practical fields such as business, economics, finance, 

science and engineering, etc. [1, 2, 3] proper care should be taken to fit an adequate model to the underlying time series. 

A significant efforts have been done by researchers over many years for the development of efficient models to 

improve the forecasting accuracy. As a result, various important time series forecasting models have been evolved in 

literature. One of the most popular and frequently used stochastic time series models is the Autoregressive Integrated 

Moving Average (ARIMA) [2, 4] model. The basic assumption made to implement this model is that the considered 

time series is linear and follows a particular known statistical distribution, such as the normal distribution. ARIMA 

model has subclasses of other models, such as the Autoregressive (AR) [4], Moving Average (MA) [4] and 

Autoregressive Moving Average (ARMA) [4] models. 
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III. METHODOLOGY 

 

A. The Autoregressive Moving Average (ARMA) Models 

An ARMA(p, q) model is a combination of AR(p) and MA(q) models and is suitable for univariate time series modeling. 

In an AR(p) model the future value of a variable is assumed to be a linear combination of p past observations and a 

random error together with a constant term. Mathematically the AR(p) model can be expressed as [4]: 

 

                      (1) 

Here  and  are respectively the actual value and random error (or random shock) at time period ,  (n = 1,2, ... , p) 

are model parameters and  is a constant. The integer constant p is known as the order of the model. Sometimes the 

constant term is omitted for simplicity. Usually for estimating parameters of an AR process using the given time series, 

the Yule-Walker equations [4] are used.  

Just as an AR(p) model regress against past values of the series, an MA(q) model uses past errors as the explanatory 

variables. The MA(q) model is given by [4]: 

 

    (2) 

 

Here  (n = 1,2, ... , q) are model parameters and λ is a mean of the process. The integer constant q is known as the 

order of the model. The random shocks are assumed to be a white noise [4] process, i.e. a sequence of independent and 

identically distributed (i.i.d) random variables with zero mean and a constant variance σ
2
. Generally, the random shocks 

are assumed to follow the typical normal distribution. Thus, conceptually a moving average model is a linear regression 

of the current observation of the time series against the random shocks of one or more prior observations. 

Autoregressive (AR) and moving average (MA) models can be effectively combined together to form a general and 

useful class of time series models, known as the ARMA models. Mathematically an ARMA(p, q) model is represented as 

[4]: 

 with                                               (3) 

 

Usually ARMA models are manipulated using the lag operator [4] notation. The lag or backshift operator is defined as 

. Polynomials of lag operator or lag polynomials are used to represent ARMA models as follows: 

 

AR(P) model:   

MA(Q) model:   

ARMA(p, q) model:   

Here    and     

 

2. Box-Jenkins Methodology 

 

The next issue to our concern is how to select an appropriate model that can produce accurate forecast based on a 

description of historical pattern in the data and how to determine the optimal model orders. Statisticians George Box 

and Gwilym Jenkins developed a practical approach to build ARIMA model, which best fit to a given time series and 

also satisfy the parsimony principle. Their concept has fundamental importance on the area of time series analysis and 

forecasting [2]. 

The Box-Jenkins methodology does not assume any particular pattern in the historical data of the series to be 

forecasted. Rather, it uses a three step iterative approach of model identification, parameter estimation and diagnostic 

checking to determine the best parsimonious model from a general class of ARIMA models [2]. This three-step process 

is repeated several times until a satisfactory model is finally selected. Then this model can be used for forecasting 

future values of the time series. The Box-Jenkins forecast method is schematically shown in Figure 1.  
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Figure 1. The Box-Jenkins methodology for optimal model selection. 

 

A crucial step in an appropriate model selection is the determination of optimal model parameters. One criterion is 

that the sample ACF and PACF, calculated from the training data should match with the corresponding theoretical or 

actual values [4, 5, 6]. Other widely used measures for model identification are Akaike Information Criterion (AIC) [5, 

6] and Bayesian Information Criterion (BIC) [5, 6] which are defined below: 

 
2
/n)

  
+ 2p                                                                             (4) 

2
/n)

  
+ p +p n)                                                              (5) 

 

Here n is the number of effective observations, used to fit the model, p is the number of parameters in the model and 
2
 is the sum of sample squared residuals. The optimal model order is chosen by the number of model parameters, 

which minimizes either AIC or BIC. Other similar criteria have also been proposed in literature for optimal model 

identification. 

 

IV. EXPERIMENTAL RESULTS 

 

As a case study, we consider the analysis of quarterly U.S. RGDP(Real gross domestic product) from 01.01.1947 to 

01.07.2017, with n = 283 observations,  which is not seasonally adjusted. Real gross domestic product is the inflation 

adjusted value of the goods and services produced by labor and property located in the United States [7]. Data is taken 

from [8] is divided into two time frames. From 01.01.1947 to 01.01.2014 will be used as a training data set and the 

remaining which is from 01.04.2014 to 01.07. 2017 will be used as a test set to validate the forecasting accuracy. 

Figure 2. Log of time series of quarterly U.S. RGDP from 1947 to 2014 
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From Figure 2, we can see that sample time series plot is non-stationary, upward trend. Therefore, we used differencing 

to make it stationary in order to go further. The first differencing removes the trend from our data and we are able to 

notice that the variability in the first half of the data is larger than in the second half of the data. Thus, we ended up 

with the second differencing. From Figure 3, it appears to be covariance stationary with mean zero. We can therefore 

reject the null hypothesis of non-stationarity and claim that the series with log second differencing is a realization of 

stationary process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Log of time series of quarterly U.S. RGDP from 1947 to 2014 

 

Table 1. AIC and BIC criterion 

 

Orders 

p,q of 

ARMA 

model 

 

(0,1) 

 

(1,0) 

 

(1,1) 

 

(2,1) 

 

(1,2) 

 

(2,2) 

 

AIC 

 

-1713.56 

 

-1691.68 

 

-1734.64 

 

-1724.70 

 

-1734.53 

 

-1739.82 

 

BIC 

 

-1702.80 

 

-1684.52 

 

-1720.31 

 

-1706.81 

 

-1716.61 

 

-1718.34 

 

From Table 1, analyzing AIC values it is concluded that the ARMA(2,2) model is most suitable for our time series. 

From BIC values, however, the ARMA(1,1) is judged to be better suited. The fact that AIC and BIC provided different 

indications about the best fitting models is not surprising because BIC penalizes larger models more than AIC. Thus, 

BIC tends to produce more parsimonious best fitting models than AIC. Table 2 shows error analysis of ARMA(1,1) and 

ARMA(2,2) models. It is seen that ARMA(1,1) model out performs the other models as it has the minimum error.  

 

 

Table 2. Comparison of errors using the second difference of log of RGDP 

 
 ARMA(1,1) ARMA(2,2) 

RMSE 0.0040678 0.0041388 

MAE 0.0029783 0.003115 
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a) 

b) 

 

Figure 4. (a) - Residuals of ACF and PACF, (b) - Normality plot  
 

From Figure 4, it can clearly be seen that residuals of our model are white noise sequence with mean zero and variance 

σ
2
, also the normality plot illustrate that our residuals are normally distributed, which means our model can be useful. 

Thus, we accept this model. 

 

After model identification, the next step is to find parameters to fit the data. We estimated the parameters of ARMA(1,1) 

model using the Maximum Likelihood Estimation for the whole training data set, that is, form 1947 to 2014 and 

estimated values are  and . 

 

The ARMA( 1,1) model has the estimated representation as : 

 

        with  ~WN(0, 0.49)                                      (6) 

 

Using the model in equation (6), we forecast the whole data (training + test) and it is visualized in Figure 5. The output 

performance are RMSE = 0.012453 and MAE = 0.011904. 
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Figure 5. ARMA(1,1) model forecast for log of original RGDP. 

 

 

V. CONCLUSION AND FUTURE WORK 

 

In this paper, the Box-Jenkins method highlighted to model the nonstationary time series. We have considered a few 

important performance measures for evaluating the accuracy of forecasting models. It has been understood that for 

obtaining a reasonable knowledge about the overall forecasting error, more than one measure should be used in practice. 

The forecast accuracy was considered using the RMSE and MAE together with AIC and the BIC techniques. Moreover, 

our satisfactory understanding about the considered forecasting models and their successful implementation can be 

observed from residual and forecast diagrams. However in some cases, significant deviation can be seen among the 

original observations and our forecasted values. In such cases, we may choose a suitable data preprocessing, and this 

will be one of our mission in our future work to improve the forecast performances. 
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