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ABSTRACT: In this paper, the concepts of s-geodetic iteration number and s-geodetic number of a fuzzy graph based 

on sum distance in fuzzy graphs are introduced. Some properties related to these concepts are established. The s-

geodetic iteration number of fuzzy trees, fuzzy cycles and complete bipartite fuzzy graphs subject to certain conditions 

are identified. A necessary and sufficient condition for a connected fuzzy graph G : (V, σ, µ) to have its s-geodetic 

number as |V | is established. An upper and lower bound for the s-geodetic number of a fuzzy graph is discussed along 

with suitable examples. The s-geodetic number of complete bipartite fuzzy graphs and of fuzzy cycles is examined. The 

concept of extreme s-geodesic fuzzy graphs is introduced and some of its properties are examined. Finally, an attempt 

is made to define the concept of a minimum s-geodetic fuzzy subgraph along with some of its properties. 

 

I.  INTRODUCTION 

 

Zadeh in 1965 [30] brought the concept of fuzzy sets into existence which gave a platform for describing the 

uncertainties prevailing in day-to-day life situations. Later on, the theory of fuzzy graphs was developed by Rosenfeld 

in the year 1975 [22]along with Yeh and Bang [29]. Rosenfeld also obtained the fuzzy analogue of several graph 

theoretic concepts like paths, cycles, trees and connectedness along with some of their properties [22] and the concept 

of fuzzy trees [19],automorphism of fuzzy graphs [2], fuzzy interval graphs [16],cycles and cocycles of fuzzy graphs 

[17] etc. has been established by several authors during the course of time. Fuzzy groups and the notion of a metric in 

fuzzy graphs were introduced by Bhattacharya [1]. The concept of strong arcs [5] and geodesic distance in fuzzy graphs 

[4] were introduced by Bhutani and Rosenfeld in the year 2003. The definition of fuzzy end nodes and some of their 

properties were established by the same authors in [3]. Several other important works on fuzzy graphs can be found in 

[21, 14, 26]. Studies in fuzzy graphs using µ-distance was carried out by Rosenfeld [23] in 1975 and was further 

studied by Sunitha and Vijayakumar in [26]. In crisp graph, the concept of geodetic iteration number was first 

introduced by Harary and Nieminen in 1981 [12]. This concept along with that of geodetic numbers in graphs was 

again discussed by several authors in [8],[10] and [9]. Later on, these concepts were extended to fuzzy graphs using 

geodesic distance by Suvarna and Sunitha in [28] and the same based on µ-distance was introduced by Linda and 

Sunitha in [13].The concept of sum distance and some of its metric aspects was introduced by Mini Tom and Sunitha in 

[15]. 
In this paper, s-geodetic iteration number and s-geodetic number of a fuzzy graph based on sum distance are introduced 

and certain properties satisfied by them are identified. The concepts of Extreme s-geodesic fuzzy graph and Minimum 

s-geodetic fuzzy subgraph are also explained.  

 

II. PRELIMINARIES 

 

A fuzzy graph [18] is a triplet G : (V, σ, µ) where V is vertex set, σ a fuzzy subset of V and µ a fuzzy relation on σ 

such that µ(u, v) ≤ σ(u)∧σ(v), ∀u, v ∈ V .  

We assume that V is finite and non-empty, µ is reflexive (i.e., µ(x, x) = σ(x), ∀x) and symmetric (i.e., µ(x, y) = µ(y, x), 

∀(x, y)). Also we denote the underlying crisp graph [11] by G∗ : (σ ∗ , µ∗ ) where σ ∗ = {u ∈ V: σ(u) > 0} and µ∗ = {(u, 

v) ∈ V × V: µ(u, v) > 0}. Here we assume σ ∗ = V.  
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A fuzzy graph H : (V, τ, ν) is called a partial fuzzy subgraph [18] of G : (V, σ, µ) if τ (u) ≤ σ(u) for every u ∈ τ ∗ and 

ν(u, v) ≤ µ(u, v) ∀(u, v) ∈ ν ∗ . In particular, we call H : (V, τ, ν) a fuzzy subgraph of G : (V, σ, µ) if τ (u) = σ(u), ∀u ∈ 

τ ∗ and ν(u, v) = µ(u, v), ∀(u, v) ∈ ν ∗ and if in addition τ ∗ = σ ∗ , then H is called a spanning fuzzy subgraph of G. A 

fuzzy graph H : (P, τ, ν) is called a fuzzy subgraph of G : (V, σ, µ) induced by P if P ⊆ V , τ (u) = σ(u) for all u in P 

and ν(u, v) = µ(u, v) for all u, v in P. 

 A fuzzy graph G : (V, σ, µ) is called trivial if |σ ∗ | = 1. Otherwise it is called non-trivial.  

A fuzzy graph G : (V, σ, µ) is a complete fuzzy graph [18] if µ(u, v) = σ(u)∧σ(v) ∀u, v ∈ σ ∗. 

 

A weakest arc of G : (V, σ, µ) is an arc with least non zero membership value. A path P of length n is a sequence of 

distinct nodes u0, u1, ..., un such that µ(ui−1, ui) > 0, i = 1, 2, 3, ..., n and the degree of membership of a weakest arc in 

the path is defined as its strength.  

The path becomes a cycle if u0 = un, n ≥ 3 and a cycle is called a fuzzy cycle [19] if it contains more than one weakest 

arc. The strength of connectedness between two nodes u and v is defined as the maximum of the strengths of all paths 

between u and v, and is denoted by CONNG(u, v). A u − v path P is called a strongest u − v path if its strength equals 

CONNG(u, v). A fuzzy graph G : (V, σ, µ) is connected if for every u, v in σ ∗ , CONNG(u, v) > 0. 

An arc (u, v) of a fuzzy graph is called strong if its weight is at least as great as the strength of connectedness of its end 

nodes u, v when the arc (u, v) is deleted and a u − v path P is called a strong path if P contains only strong arcs [5]. 

Depending on the CONNG(u, v) of an arc (u, v) in a fuzzy graph G, strong arcs are further classified as α-strong and β-

strong and the remaining arcs are termed as δ-arcs [14] as follows. Note that G − (u, v) denotes the fuzzy subgraph of G 

obtained by deleting the arc (u, v) from G. An arc (u, v) in G is called α-strong if µ(u, v) > CONNG−(u,v)(u, v).  

An arc (u, v) in G is called β-strong if µ(u, v) = CONNG−(u,v)(u, v). An arc (u, v) in G is called a δ-arc if µ(u, v) < 

CONNG−(u,v)(u, v).A δ-arc (u, v) is called a δ ∗ -arc if µ(u, v) > µ(x, y) where (x, y) is a weakest arc of G.  

A node is a fuzzy cut node of G : (V, σ, µ) if removal of it reduces the strength of connectedness between some other 

pair of nodes [22]. Two nodes u and v in a fuzzy graph G : (V, σ, µ) are neighbors if µ(u, v) > 0 and v is called a 

strong neighbor of u if the arc (u, v) is strong. Also N(u) denotes the set of neighbors of u other than u and degree of u 

is deg(u) = |N(u)|. A node u with deg(u) = 1 is an end node and a node u with deg(u) > 1 is an internal node. A node v 

is called a fuzzy end node of G if it has exactly one strong neighbor in G [3]. A connected fuzzy graph G : (V, σ, µ) is 

called a fuzzy tree [22] if it has a spanning fuzzy subgraph F : (V, σ, ν) which is a tree such that for all arcs (u, v) not in 

F,CONNF (u, v) > µ(u, v). A maximum spanning tree (MST) [24] of a connected fuzzy graph G : (V, σ, µ) is a fuzzy 

spanning subgraph T : (V, σ, ν), such that T∗ is a tree, and for which Σu vν(u, v) is maximum. A fuzzy graph G is said 

to be bipartite [25] if the vertex set V can be partitioned into two non-empty sets V1 and V2 such that µ(v1, v2) = 0 if 

v1, v2∈ V1 or v1, v2∈ V2. Further if µ(u, v) = σ(u) V σ(v) ∀u ∈ V1 and v ∈ V2, then G is called a complete bipartite 

fuzzy graph and is denoted by Kσ1,σ2 , where σ1 and σ2 are respectively the restrictions of σ to V1 and V2. 

 

For any path P : u0 − u1 − u2 − ... − un, length of P, L(P), is defined as the sum of the weights of the arcs in P. That is, 

                  
 
      If n = 0, define L(P) = 0 and for n ≥ 1, L(P) > 0. 

 For any two nodes u, v in G : (V, σ, µ), if P = {Pi : Pi is a u-v path, i = 1, 2, 3, ...},then the sum distance between u and 

v is defined as ds(u, v) = min{L(Pi) : Pi∈ P, i = 1, 2, 3, ...}. The eccentricityes(u) of a node u in the connected fuzzy 

graph G : (V, σ, µ) is the sum distance to a node farthest from u. i.e, es(u) = max{ds(u, v) : v ∈ V }. The radiusrs(G) is 

the minimum eccentricity of the nodes, whereas the diameter ds(G) is the maximum eccentricity. A node u is an s-

peripheral node if es(u) = ds(G). A diametral path of a fuzzy graph is a shortest path whose length is equal to the 

diameter of the fuzzy graph.  

Throughout this paper we consider only connected fuzzy graphs. 

 

III. s-GEODETICITERATION NUMBER OF A FUZZY GRAPH [s-gin(G)] 

 

In crisp graph, the concept of a geodesic and of geodesic iteration number is discussed in [6] and [11]. Later on, these 

ideas were extended to fuzzy graphs using g-distance by Suvarna in [28] and using µ-distance by Linda in [13]. Here 

we are extending these ideas to fuzzy graphs using sum distance ds(u, v). Depending on sum distance, we define s-

geodesic, s-geodetic closure and s-geodetic iteration number as follows. 
 

Definition 3.1. Any path P from x to y whose length is ds(x, y) is called s-geodesic from x to y.  
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Definition 3.2. Let S ⊆ V be a set of nodes of a connected fuzzy graph G : (V, σ, µ). Then the s-geodetic closure of S, 

with respect to sum distance, is the set of all nodes of S as well as all nodes that lie on s-geodesics between nodes of S 

and is denoted by (S). 

 

 Example 3.3. Consider the fuzzy graph given in Fig.1.   

 

 
 

Fig.1 

 

Here, ds(u, v) = min{0.1, 0.5, 0.6} = 0.1. Similarly ds(v, x) = 0.3, ds(u, x) = 0.2, ds(u, w) = 0.2, ds(v, w) = 0.3 and ds(w, 

x) = 0.1. Now if S = {v, x}, then since ds(v, x) = 0.3, both (v, x) and v − u − x are s-geodesics from v to x and so (S) = 

{u, v, x}. Similarly if S = {u, v, x}, then also (S) = {u, v, x}. 

 

Definition 3.4.Let S ⊆ V be a set of nodes of a connected fuzzy graph G : (V, σ, µ). Let S 
1
 = (S), S

2
 = (S 

1
 ) = ((S)) etc 

where S 
1
 , S

2
 , ..., are s-geodetic closures. 

Since we consider only finite fuzzy graphs, the process of taking closures must terminate with some smallest n such 

that S 
n
 = S 

n+1
. The smallest value of n for which S 

n
 = S 

n+1
 is called s-geodetic iteration number of S, denoted by s-

gin(S). The maximum value of s-gin(S) for all S ⊆ V (G) is called s-geodetic iteration number of G, denoted by s-

gin(G). 

 

Example 3.5. Consider the fuzzy graph given in Fig.1. Taking S = {v, x}, S
1
 = (S) = {u, v, x} S 

2
 = S

1
. Therefore s-

gin(S) = 1. It can be verified that maximum value of s-gin(S) is 1 for all S ⊆ V (G). Therefore s-gin(G) = 1.  

 

Remark 3.6. For a trivial fuzzy graph G, s-gin(G) = 0. 

 

Proposition 3.7. Let G : (V, σ, µ) be a connected fuzzy graph on n nodes in which each pair of nodes in G is joined by 

an arc which is the unique s-geodesic between them. Then the s-geodetic iteration number, s-gin(G) = 0. 

 

Proof. Let S ⊆ V (G). Then since every pair of nodes in S is connected by an arc which is the unique s-geodesic 

between them, any s-geodesic between a pair of nodes u, v of S is the arc (u, v) and so S
 1
 = (S) = S. Since this is true 

for any S ⊆ V (G), we get s-gin(G) = 0. 

 

Proposition 3.8. The s-geodetic iteration number of a fuzzy tree G : (V, σ, µ) such that G∗ is a star, is 1. 

 

Proof. Since G∗ is a star graph, it is a tree and hence there is always a unique path between any two nodes of G [11]. 

Let us consider the following cases. 

 

 Case(1): S ⊆ V (G) contains the node x of G where deg(x) > 1.  

Then since x lies on the s-geodesic between any two nodes of S and since x ∈ S, we get S 
1
 = (S) = S. Hence s-gin(S) = 

0.  

 

Case(2): S ⊆ V (G) does not contain the node x of G where deg(x) > 1.  

In this case, the node x that lies on the s-geodesic joining any two nodes of S does not belong to S and so x ∈ (S) = S 
1
 . 

Therefore S   S 
1
 .  

But by case(1), since S 
1 
contains the node x, we get S 

2
 = (S 

1
 ) = S 

1
 . Hence in this case, s-gin(S) = 1. From the above 

two cases, we get s-gin(G) = max{0, 1} = 1. 
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Remark 3.9. In general, the s-geodetic iteration number of a fuzzy tree G : (V, σ, µ), on n ≥ 3 nodes, such that G∗ is a 

tree is 1. 

 

Remark 3.10. In a fuzzy cycle C, for any S ⊆ V (C), s-gin(S) is either 0 or 1 and so the s-geodetic iteration number of 

a fuzzy cycle C, s-gin(C) = max{0, 1} = 1.  

 

Example 3.11. Consider the fuzzy cycle C in Fig.2. 

 

 
 

Fig.2 

 

Here if S = {v1, v4}, then S 
1
 = (S) = {v1, v3, v4} and S

 2
 = (S 

1
 ) = S 

1
 . Therefore s-gin(S) = 1. Also if S = {v1, v2}, then 

S 
1
 = (S) = S and so s-gin(S) = 0. It can be seen that for any S ⊆ V (G), s-gin(S) is either 0 or 1 and so s-gin(C) = 

max{0, 1} = 1. 

 

Proposition3.12. Let Kσ1,σ2 = (V1∪V2, σ, µ) be a complete bipartite fuzzy graph such that |V1| = 2 = |V2|, then the s-

geodetic iteration number of Kσ1,σ2 is 1 if each arc in Kσ1,σ2 is the unique s-geodesic between its nodes. 

 

 Proof. Suppose that each arc of the complete bipartite fuzzy graph Kσ1,σ2 is the unique s-geodesic between its nodes. 

Let S ⊆ V1∪ V2. We have to consider the following cases.  

 

Case(1): S comprises of two nodes from the same partition. 

 Suppose S comprises of two nodes u and v from the same partition say V1. Then since there is no arc joining u to v in a 

bipartite fuzzy graph, there always exists a node (say x) from V2 lying on an s-geodesic joining u and v. Thus S 
1
 = (S) 

= {u, v, x} and since by assumption the arcs (u, x) and (v, x) are s-geodesics, we get S 
2
 = (S 

1
 ) = S 

1
 . Therefore s-

gin(S) = 1. 

The same result holds if S comprises of two nodes from V2. 

 

 Case(2): S comprises of two nodes, one from V1 and the other from V2.  

Then since by assumption each arc is an s-geodesic, we get S 
1
 = (S) = S and so s-gin(S) = 0. Now all the other subsets 

of V1∪ V2 will contain either nodes from the same partition or from two different partitions and hence for all S ⊆ V1∪ 

V2, we get s-gin(S) as 0 or 1 and so s-gin(Kσ1,σ2) = max{0, 1} = 1. 

 

Example 3.13. Consider the complete bipartite fuzzy graph G given in Fig.3.  
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Fig.3 

 

Here if S = {u, v} then S 
1
 = (S) = {u, x, v}  S. Also, S 

2
 = (S 

1
 ) = {u, x, v} = S 

1
 . Therefore s-gin(S) = 1. Similarly if 

S = {w, x}, we get s-gin(S) = 1. Next, if S = {u, w} then S 
1
 = (S) = S and so s-gin(S) = 0. Note that for every subset S 

which consists of one node in first partition and another node in the second partition, s-gin(S) = 0. Now, if S = {u, x, 

w} then S 
1
 = (S) = {u, x, w} = S. Therefore s-gin(S) = 0. Again if S = {v, x, w} then S 

1
 = (S) = {v, x, w, u} = V (G) 

 S. Also, S 
2
 = (S 

1
 ) = V (G) = S 

1
 . Hence s-gin(S) = 1. Similarly for all other S ⊆ V (G), it can be shown that s-gin(S) 

is either 0 or 1 and so s-gin(G) = max{0, 1} = 1. 

 

Proposition 3.14. Let Kσ1,σ2= (V1∪V2, σ, µ) be a complete bipartite fuzzy graph with |V1| = 2 and |V2| ≥ 3. Then the s-

geodetic iteration number of Kσ1,σ2, s-gin(Kσ1,σ2) = 2 if each arc of Kσ1,σ2has the same membership value. 

 

Proof. Let u and v be the two nodes in V1 and S ⊆ V1∪ V2. Consider the following cases: 

 

Case(1): S = V1. Then since each arc of Kσ1,σ2 has the same membership value, we get S
 1
 = (S) = V1∪ V2 and so S 

2
 = 

(S 
1
 ) = V1∪ V2 = S 

1
 . Hence in this case, s-gin(S) = 1.  

Case (2): S ⊆ V2 and |S| = 2. Then in this case, S 
1
 = (S) and V1⊆ (S) and since all other nodes in Kσ1,σ2lie on an s-

geodesic joining u and v, we get S 
2
 = (S 

1
 ) = V1∪ V2. Clearly then S 

3
 = (S 

2
) = V1∪ V2 = S 

2
 and hence s-gin(S) = 2.  

 

Case (3): S contains two nodes, one from V1 and the other from V2. Then, since each arc is an s-geodesic, we get S 
1
 = 

(S) = S. Hence s-gin(S) = 0. All other subsets of V1∪ V2 will be a combination of the above three cases and so for all S 

⊆ V1∪ V2, s-gin(Kσ1,σ2) = max{0, 1, 2} = 2. 

 

Example 3.15. Consider the complete bipartite fuzzy graph G given in Fig.4 . 

 

 
 

                   Fig.4 

 
Here, if S = {u, v} then S 

1
 = (S) = V (G) and so S 

2
 = (S 

1
 ) = V (G) = S 

1
 . Therefore s-gin(S) = 1. Now if S = {w, x} 

then S 
1
 = (S) = {w, u, v, x} and S 

2
 = (S 

1
 ) = V (G). Also S 

3
 = (S 

2
 ) = V (G) = S 

2
 . Hence in this case, s-gin(S) = 2. 

Next suppose S = {u, w}, then clearly S 
1
 = (S) = S and so s-gin(S) = 0. It can be verified that for all other subsets S of 

V (G), s-gin(S) is either 0, 1 or 2. Hence, s-gin(G) = max{0, 1, 2} = 2. 
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IV. s-GEODETIC NUMBER OF A FUZZY GRAPH [s-gn(G)] 

 

Studies on the geodetic number of a crisp graph was done by Gary Chartrand, Harary and Zhang in [8]. The geodetic 

number of fuzzy graphs using g-distance was introduced by Suvarna and Sunitha in [28] and the same concept using µ-

distance was later on developed by Linda and Sunitha in [13]. The concept of geodetic numbers using sum distance is 

defined below and some of the properties satisfied by them are exhibited.  

 

Definition 4.1. A set S ⊆ V (G) such that every node of G is contained in an s-geodesic joining some pair of nodes in S 

is called an s-geodetic cover(s-geodetic set) of G. In other words if (S) = V (G), then S is an s-geodetic cover of G. 

 

Example 4.2. Consider the fuzzy graph given in Fig.1.  

If S = {v, x, w} then (S) = {u, v, x, w} = V (G). Therefore S is an s-geodetic cover of G. 

 

Remark 4.3. A connected fuzzy graph has at least one s-geodetic cover. 

 

Definition 4.4. The s-geodetic number of G, denoted by s-gn(G), is the minimum order of its s-geodetic covers and any 

cover of order s-gn(G) is an s-geodetic basis. 

 

Example 4.5. Consider the fuzzy graph given in Fig.1. The set S = {v, x, w} is the unique s-geodetic basis and so s-

gn(G) = 3. 

 

Proposition 4.6. Let G : (V, σ, µ) be a connected fuzzy graph on n nodes. Then the s-geodetic number, s-gn(G) = n if 

and only if each pair of nodes in G is joined by an arc which is the unique s-geodesic between them. 

 

Proof. Given G : (V, σ, µ) be a connected fuzzy graph on n nodes. First suppose that each pair of nodes in G is joined 

by an arc which is the unique s-geodesic between them.  

Then ds(u, v) = µ(u, v) for each arc (u, v) in G. Therefore no node lies on an s-geodesic between any two other nodes. 

Hence s-geodetic basis consists of all nodes of G. Thus s-gn(G) = n. Conversely, let s-gn(G) = n. Then the s-geodetic 

basis consists of all nodes in G. ie, S = V (G) is the s-geodetic cover with minimum cardinality. Hence no node of G 

lies on an s-geodesic between two other nodes. For if u is a node of G lying on an s-geodesic between some pair of 

nodes in G, then S − {u} is also an s-geodetic cover of G which is a contradiction to the fact that S is the s-geodetic 

cover with minimum cardinality. Hence each pair of nodes in G is joined by an arc which is the only s-geodesic 

between them. 

 

Proposition 4.7. For any non-trivial connected fuzzy graph G on n nodes, 2 ≤ s-gn(G) ≤ n.  

Proof. Any s-geodetic cover of a non-trivial connected fuzzy graph needs at least 2 nodes and so s-gn(G) ≥ 2. Also, 

clearly the set of all nodes of G is an s-geodetic cover of G and so s-gn(G) ≤ n. Thus 2 ≤ s-gn(G) ≤ n. 

 

Remark 4.8. Clearly the set of two end-nodes of a path Pn is its unique s-geodetic basis and so s-gn(Pn) = 2.  

 

Remark 4.9. For a complete fuzzy graph G on 2 nodes, s-gn(G) = 2. But the converse need not be true. Example 4.10. 

Let G be a complete fuzzy graph on 3 nodes as follows. 

 

Example 4.10. Let G be a complete fuzzy graph on 3 nodes as follows. 
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Fig.5 

 

Here S = {v, w} is an s-geodetic basis and so s-gn(G) = 2. 

 

Proposition 4.11. Let G : (V, σ, µ) be a fuzzy tree such that G∗ is a tree. Then the set of all fuzzy end nodes of G form 

an s-geodetic basis for G and s-gn(G) is the number of fuzzy end nodes of G. 

 

Proof. Let S be the set of all fuzzy end nodes of G. Clearly they are the end nodes of G∗. Let v be any internal node of 

G∗. Since in a tree, there exists a unique path between any two nodes, clearly v lies on an s-geodesic joining some pair 

of nodes in S. Since v is arbitrary, every internal node of G∗ lies on an s-geodesic between some pair of nodes in S. 

Thus S is an s-geodetic cover of G. Also it is an s-geodetic set of minimum cardinality for if u is a fuzzy end node of G 

that does not belong to S, then u does not lie on any s-geodesic joining any pair of nodes in S. Therefore S is the s-

geodetic basis for G and so s-gn(G)= number of fuzzy end nodes of G. 

 

Corollary 4.12. Let G : (V, σ, µ) be a fuzzy tree having n nodes with n ≥ 3 such that G∗ is a tree. Then s-gn(G) = n − 1 

only if G∗ is a star graph.  

 

Proof. Suppose G∗ is a star graph on n nodes say K1,n−1. Then by Proposition 4.11, the set of all fuzzy end nodes of G 

forms an s-geodetic basis of G. Hence s-gn(G) = n − 1. 

 

Proposition 4.13. [20] A node w is a fuzzy cut node of G : (V, σ, µ) if and only if w is an internal node of every 

maximum spanning tree of G. 

 

 Proposition 4.14. [27] A fuzzy graph is a fuzzy tree if and only if it has a unique maximum spanning tree. 

 

Proposition 4.15. [14] Let T be any spanning tree of a fuzzy graph G. Then T is a MST of G if and only if T contains 

no δ-arcs. 

 

 Using the above results, we get the following. 

 

Corollary 4.16. An s-geodetic basis of a fuzzy tree G : (V, σ, µ) such that G∗ is a tree contains none of the fuzzy cut 

nodes of G.  

 

Proof. Let w be a fuzzy cut node of G. Then by Proposition 4.13, fuzzy cut nodes of a fuzzy graph are internal nodes of 

each of its maximum spanning trees. Hence using Proposition 4.14, we get w is an internal node of the unique 

maximum spanning tree T of G. Now, since by Proposition 4.15, each arc of T is strong, w being an internal node of T 

is not a fuzzy end node of G and so by Proposition 4.11, it follows that w is not a member of the s-geodetic basis of G. 

Since w is arbitrary, it follows that the s-geodetic basis of G contains none of the fuzzy cut nodes of G. 

 

Remark 4.17. However in general, an s-geodetic basis of a fuzzy graph G may contain its fuzzy cut nodes. 

 

Example 4.18. Consider the fuzzy graph given in Fig.6. 
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Fig.6 

 

Here S = {v3, v5} is an s-geodetic basis for G and v5 is a fuzzy cut node of G. 

 

Remark 4.19. It has been proved using geodesic distance that a fuzzy tree has a unique geodesic basis consisting of its 

fuzzy end nodes [4] .But for a fuzzy tree, using sum distance, s-geodetic basis need not be the set of fuzzy end nodes of 

G. 

 

Example 4.20. Consider the fuzzy graph G given in fig.7. 

 

 
Fig.7 

 

 Here v and w are the fuzzy end nodes of G but {v, w} is not an s-geodetic cover since ({v, w}) = {v, w}  V (G) and 

the s-geodetic basis is {u, v, w}. 

 

Proposition 4.21. For any connected fuzzy graph G, s-gn(G) = 2 if and only if there exists s-peripheral nodes u and v 

such that every node of G lies on an s-geodesic joining u and v. Also let P : u = u0, u1, u2, ..., un = v be an s-geodesic 

joining u and v. Then ds(u, v) = ds(u0, u1) + ds(u1, u2) + ... + ds(un−1, un). 

 

Proof. Let u and v be such that each node of G is on an s-geodesic joining u and v. Since G is non-trivial, s-gn(G) ≥ 2. 

Also since each node of G is on an s-geodesic between u and v, S = {u, v} is an s-geodetic basis and hence s-gn(G) = 2.  

Conversely let s-gn(G) = 2 and S = {u, v} be an s-geodetic basis of G. That is, S = {u, v}is an s-geodetic cover of G 

with minimum cardinality. Hence each node of G lies on some s-geodesic between u and v. Now to prove that u and v 

are s-peripheral nodes. i.e, ds(u, v) = ds(G). Assume ds(u, v) < ds(G). Then there exists s-peripheral nodes s and t such 

that s and t belongs to distinct s-geodesics joining u and v and ds(s, t) = ds(G).  

Then ds(u, v) = ds(u, s) + ds(s, v)............(1)  

ds(u, v) = ds(u, t) + ds(t, v)..............(2) 

 ds(s, t) ≤ ds(s, u) + ds(u, t)..............(3) 

 ds(s, t) ≤ ds(s, v) + ds(v, t)...............(4)  

Since ds(u, v) < ds(s, t), (3) implies that ds(u, v) < ds(s, u) + ds(u, t).  

Then by (1) we get ds(u, s) + ds(s, v) < ds(s, u) + ds(u, t).  

Therefore ds(s, v) < ds(u, t). 

 Now by (4), ds(s, t) < ds(u, t) + ds(v, t).  

Then again using (1) we get ds(s, t) < ds(u, v), which is a contradiction.  

http://www.ijarset.com/


   
  

 
ISSN: 2350-0328 

International Journal of AdvancedResearch in Science, 

Engineering and Technology 

Vol. 7, Issue 8 , August 2020 

 

Copyright to IJARSET                                             www.ijarset.com                                                             14710 

 

 

Thus u and v must be s-peripheral nodes.  

Next given P : u = u0, u1, u2, ..., un = v be an s-geodesic joining u and v.  

Then ds(ui−1, ui) = µ(ui−1, ui). 

 Therefore ds(u,v) = L(P) =             
 
   =             

 
   . 

 Hence ds(u, v) = ds(u0, u1) + ds(u1, u2) + ... + ds(un−1, un). 

 

Proposition 4.22. If G : (V, σ, µ) is a non-trivial connected fuzzy graph on n nodes with diameter d, then s-gn(G) ≤ 

n−|W| where W is the non-empty set of all nodes, other than the s-peripheral nodes, lying on the diametral path of a pair 

of nodes in G. 

 

Proof. Let u and v be the s-peripheral nodes of G for which ds(u, v) = d and let W be the set of all nodes other than u 

and v lying on the diametral path of G joining u and v. Now let S = V (G) − W. Then clearly since diametral paths are 

all s-geodesic paths, we get (S) = V (G) and consequently, s-gn(G) ≤ |S| = n − |W|. 

 

Proposition 4.23. Let Kσ1,σ2 = (V1∪V2, σ, µ) be a complete bipartite fuzzy graph on n nodes. Then  

1. s-gn(Kσ1,σ2) = 2, if |V1| = |V2| = 1. 

 2. s-gn(Kσ1,σ2) = |V2|, if |V1| = 1 and |V2| ≥ 2. 

 3. s-gn(Kσ1,σ2) = |V1|, if σ1(ui) < σ2(wj) ∀ui∈ V1 and ∀wj∈ V2 where |V1|, |V2| ≥ 2 and σ1(ui)   σ1(uk) for  

atleast one i and k. 

 

Proof. - 

1. Follows from Proposition 4.6. 

 2. Follows from Corollary 4.12. 

 3. Let |V1| = r and |V2| = s, r, s ≥ 2 where V1 = {u1, u2, ..., ur} and V2 = {w1, w2, ..., ws} are bi-partitions of Kσ1,σ2. 

 Suppose that σ1(ui) < σ2(wj ) ∀ui∈ V1 and ∀wj∈ V2. Let up be a node of V1 having the least non-zero membership value 

say a and let uq be the node of V1 having the next least membership value say b. Then clearly each edge adjacent to up 

has strength a whereas each edge adjacent to uq has strength b where a, b∈ (0, 1]. Take S = {up, uq}. We have ds(up, uq) 

= ds(up, wj) + ds(wj , uq) = a + b, (1 ≤ j ≤ s) which is the shortest sum distance between up and uq. Therefore each node 

wj, (1 ≤ j ≤ s) lies on an s-geodesic joining up and uq. That is, (S) = S ∪V2. Thus these two nodes together with the 

remaining nodes of V1 will form an s-geodetic cover of Kσ1,σ2. i.e, V1 is an s-geodetic cover of Kσ1,σ2. We prove that V1 

is an s-geodetic basis of Kσ1,σ2. That is, we prove that V1 is an s-geodetic cover of Kσ1,σ2 having minimum cardinality. In 

other words, if T is any set of nodes such that |T| < |V1| = r, then we show that T is not an s-geodetic cover of Kσ1,σ2. Let 

us consider the following cases.  

 

Case(1): If T ⊂ V1, then there exists a node ui∈ V1 such that ui  T. Then the only s-geodesics containing ui are ui-wj-

uk,(k  i) and wj-ui-wl ,(l  j) and so ui cannot lie on an s-geodesic joining 2 nodes of T. Thus T is not an s-geodetic 

cover of Kσ1,σ2.  

 

Case(2): If T ⊂ V2, then by a similar argument, T is not an s-geodetic cover of Kσ1,σ2.  

 

Case(3): Now, if |V2| < |V1| = r, take T = V2.  

Then the shortest sum distance between any two nodes of V2 is given by  

ds(wj , wl) = ds(wj, up) + ds(up, wl) = a + a.......................(1)  

Therefore (T) = V2∪ {up}  V (Kσ1,σ2). Hence T is not an s-geodetic cover of Kσ1,σ2.  

 

Case(4): If T ⊂ V1∪ V2 such that T contains at least one node from each of V1 and V2, then since |T| < |V1|, there exists 

at least one node ui∈ V1, say uk, distinct from up such that uk T. 

 Now since σ1(uk) > σ1(up), each edge adjacent to uk will have strength greater than a. Thus we get ds(wj, uk)+ds(uk, wl) 

>a+a = ds(wj , wl) (from (1)). Therefore uk does not lie on any s-geodesic joining nodes of V2. Hence uk  (T) and so T 

is not an s-geodetic cover of Kσ1,σ2. Thus in any case, T is not an s-geodetic cover of Kσ1,σ2. Hence V1 is an s-geodetic 

basis of Kσ1,σ2 so that s-gn(Kσ1,σ2) = |V1| = r. 

 

Example 4.24. Consider the complete bipartite fuzzy graph Kσ1,σ2= (V1∪ V2, σ, µ) given below. 

 

http://www.ijarset.com/


   
  

 
ISSN: 2350-0328 

International Journal of AdvancedResearch in Science, 

Engineering and Technology 

Vol. 7, Issue 8 , August 2020 

 

Copyright to IJARSET                                             www.ijarset.com                                                             14711 

 

 

 
Fig.8 

 

Let V1 = {u1, u2, u3} and V2 = {w1, w2, w3}. Since ds(u1, w1) + ds(w1, u3) = 0.1 + 0.2 = 0.3 = ds(u1, u3), w1 lies on the s-

geodesic joining u1 and u3. Similarly it can be shown that all the other nodes of V2 also lies on the s-geodesic joining u1 

and u3. Therefore S = V1 is an s-geodetic cover of Kσ1,σ2. Since no other proper subset of Kσ1,σ2is an s-geodetic cover, S 

is an s-geodetic basis of Kσ1,σ2 and hence s-gn(Kσ1,σ2) = 3 = |V1|. 

 

Remark 4.25. Let Cn, n ≥ 3, be fuzzy cycles each of whose arcs are having same strength. When n is even, the set of 

any two s-peripheral nodes is an s-geodetic set of Cn. But when n is odd, no 2 nodes form an s-geodetic set and in fact 

there exists an s-geodetic set on 3 nodes. Therefore, for cycles having each arc of same strength, s-gn(Cn) = 

 
                    
                  

 . 

 

Example 4.26. Consider the following fuzzy cycles C1 and C2 each of whose arcs are having same strength.  

 

 
 

Fig.9.: C1 

 

 Here S = {u1, u3} is an s-geodesic basis of the fuzzy cycle C1 and so s-gn(C1) = 2.  

 

 

 
Fig.10: C2 

 

Also, S = {v1, v4, v5} is an s-geodesic basis of the fuzzy cycle C2 and so s-gn(C2) = 3. 
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V. EXTREME s-GEODESIC FUZZY GRAPHS 

 
Gary Chartrand and Ping Zhang in 2002 introduced the concept of Extreme geodesic graphs [7] in Graph Theory. Here 

we are extending these ideas to fuzzy graphs based on sum distance using s-geodesics.  

 

Definition 5.1. A node v in a fuzzy graph G is called an extreme node if the fuzzy subgraph induced by its neighbors 

is a complete fuzzy graph.  

 

Example 5.2. Consider the fuzzy graph G in Fig.11.  

 

 
Fig.11 

 

 Here both v and x are extreme nodes since S = {u, w} are the neighbors of v and x where the fuzzy subgraph induced 

by S, < S > is a complete fuzzy graph. 

 

Remark 5.3. Gary Chartrand et.al in [8] showed that every geodetic set of a crisp graph contains its extreme nodes. But 

the result need not be true in the case of s-geodetic sets in a fuzzy graph G. 

 

Example 5.4. The fuzzy graph G given in Fig.11 has v and x as its extreme nodes. But S = {u, w} is an s-geodetic set 

of G that does not contain any of its extreme nodes.  

 

Definition 5.5. The number of extreme nodes in a fuzzy graph G is called the extreme order of G and is denoted by 

ex(G). In Example 5.2, ex(G) = 2. 

 

Proposition 5.6. For a connected fuzzy graph G on n nodes, 0 ≤ ex(G) ≤ n.  

 

Example 5.7. Consider the fuzzy graph G in Fig.12.  

 

 
 

Fig.12 

 

 Here none of the nodes are extreme nodes of G. Therefore ex(G) = 0. 

 

Example 5.8. Consider the complete fuzzy graph G given in Fig.13. 
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Fig.13 

 

 Here the node u is an extreme node since the fuzzy subgraph induced by the neighbors v, w and x of u is a complete 

fuzzy graph. Similarly v, w and x are all extreme nodes and so ex(G) = 4 =number of nodes of G.  

 

Remark 5.9. Gary Chartrand and Ping Zhang in [7] showed that for a crisp graph G, 0 ≤ ex(G) ≤ g(G) where g(G) is 

the geodetic number of G. But this result is not true for a fuzzy graph G based on s-geodesic. 

 

Example 5.10. In the complete fuzzy graph G given in Fig.13, the nodes u, v, w and x are all extreme nodes and so 

ex(G) = 4. But s-gn(G) = 2 since S = {u, w} is an s-geodetic basis of G. Therefore ex(G) > s-gn(G). 

 

Definition 5.11. A fuzzy graph G is called an extreme s-geodesic fuzzy graph if its s-geodetic number s-gn(G) = 

ex(G). That is if G has an s-geodetic basis consisting of the extreme nodes of G.  

 

Example 5.12. In Fig.11, ex(G) = 2. Also S = {v, x} is an s-geodetic basis since (S) = V (G). Thus s-gn(G) = 2 = ex(G) 

and so G is an extreme s-geodesic fuzzy graph. 

 

Example 5.13. Consider the fuzzy graph G’ in Fig.14.  

 

 
Fig.14 

 

 Here u and y are the only extreme nodes of G’ .Therefore ex(G’ ) = 2. But S = {u, y, w} is the only s-geodetic basis of 

G’ so that s-gn(G’ ) = 3   ex(G’ ). Hence G’ is not an extreme s-geodesic fuzzy graph.  

 

Proposition 5.14. A complete fuzzy graph G : (V, σ, µ) on n nodes in which each pair of nodes is joined by an arc 

which is the unique s-geodesic between them is an extreme s-geodesic fuzzy graph.  

Proof. By Proposition 4.6 it follows that s-gn(G) = n, the number of nodes of G. Also each node of a complete fuzzy 

graph is an extreme node and so s-gn(G) = ex(G) = n. Hence G is an extreme s-geodesic fuzzy graph. 

 

Proposition 5.15. Every fuzzy tree G : (V, σ, µ) such that G∗ is a tree is an extreme s-geodesic fuzzy graph. 
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Proof. By Proposition 4.11, the s-geodetic number of a fuzzy tree G such that G∗ is a tree is the number of fuzzy end 

nodes of G. In fact, the set of all fuzzy end nodes of G are the end nodes of G∗ and consequently, they are the only 

extreme nodes of G. Therefore, ex(G) = s-gn(G), implying that the fuzzy tree G is an extreme s-geodesic fuzzy graph. 

 

Remark 5.16. A path P is always an extreme s-geodesic fuzzy graph with ex(P) = 2 = s-gn(P). 

 

Remark 5.17. A cycle Cn, n ≥ 4, contains no extreme nodes and so Cn is not an extreme s-geodesic fuzzy graph. 

 

Proposition 5.18. A complete bipartite fuzzy graph Kσ1,σ2 = (V1∪V2, σ, µ) is an extreme s-geodesic fuzzy graph if 

 1. |V1| = |V2| = 1.  

2. |V1| = 1 and |V2| ≥ 2. 

 

Proof. - 1. Follows from Proposition 5.14.  

2. Follows from Proposition 5.15.  

 

Remark 5.19. A complete bipartite fuzzy graph G on n ≥ 4 nodes, containing partitions each of whose cardinality is 

greater than 1, contains no extreme nodes and so G is not an extreme s-geodesic fuzzy graph. 

 

 Definition 5.20. For a connected fuzzy graph G on n nodes, n ≥ 2, the s-geodetic ratio of G is defined as s-rg(G) = 

s−gn(G)/n. 

 

Remark 5.21. Since by Proposition 4.7, 2 ≤ s-gn(G) ≤ n for every nontrivial connected fuzzy graph G on n nodes, we 

get 0 < s-rg(G) ≤ 1. 

 

Proposition 5.22. Let Cn, n ≥ 3, be fuzzy cycles each of whose arcs are having same strength. Then the s-geodetic ratio 

of Cn is as follows.  

s-rg(Cn) = 

 

 
                

 

 
               

 . 

 

 Proposition 5.23. The s-geodetic ratio of a fuzzy tree G : (V, σ, µ) on n nodes, n ≥ 3, such that G∗ is a star graph is 

given by s-rg(G) = (n−1)/ n . 

 

Proof. It follows from Corollary 4.12 that the s-geodetic number of G on n nodes, s-gn(G), is n − 1. Therefore, the s-

geodetic ratio of G, s-rg(G) = s−gn(G)/ n = (n−1)/ n.  

 

Definition 5.24. The extreme order ratio of a fuzzy graph G on n nodes with n ≥ 2 is defined as rex(G) = ex(G)/ n. 

 

Proposition 5.25. For an extreme s-geodesic fuzzy graph G, the s-geodetic ratio of G coincides with its extreme order 

ratio.  

 

Proof. Let G be an extreme s-geodesic fuzzy graph on n nodes. Then by definition 5.11, ex(G) = s-gn(G). 

⇒ ex(G) n = s−gn(G) n .  

⇒rex(G) = s-rg(G).  

 

Proposition 5.26. If G : (V, σ, µ) is a complete fuzzy graph on n nodes in which each pair of nodes is joined by an arc 

which is the unique s-geodesic between them, then s-rg(G) = rex(G) = 1.  

 

Proof. By Proposition 5.14, it follows that s-gn(G) = n = ex(G), G being an extreme s-geodesic fuzzy graph. Therefore 

s-rg(G) = s−gn(G)/n = n/n = 1 and rex(G) = ex(G)/n = n/n = 1. Thus s-rg(G) = rex(G) = 1.  

 

Proposition 5.27. For a path P on n nodes, s-rg(P) = rex(P) = 2/n .  
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Proof. A path P is an extreme s-geodesic fuzzy graph with ex(P) = 2 = s-gn(P). Therefore s-rg(P) = s−gn(P)/ n = 2/ n 

and rex(P) = ex(P)/ n = 2/ n . Thus s-rg(P) = rex(P) = 2/n . 

 

 The above result can be generalized as follows. 

 

Proposition 5.28. If G : (V, σ, µ) is a fuzzy tree on n nodes such that G∗ is a tree with p end-nodes, then s-rg(G) = 

rex(G) = p/n . 

 

Proof. Using Propositions 4.11 and 5.15, we get s-gn(G) = ex(G) = p.  

Therefore, s−gn(G)/ n = ex(G)/ n = p/ n . 

⇒ s-rg(G) = rex(G) = p/ n . 

 

VI. MINIMUM s-GEODETIC FUZZY SUBGRAPH 

 

The concept of Minimum geodetic subgraphs was introduced by Gary Chartrand, Frank Harary and Ping Zhang in 

[8]. Here we are introducing this concept in fuzzy graph using sum distance. 

 

Definition 6.1. A fuzzy graph H is called a minimum s-geodetic fuzzy subgraph if there exists a fuzzy graph G 

containing H as an induced fuzzy subgraph such that V (H) is an s-geodetic basis of G. 

 

Example 6.2. Consider the fuzzy graph H in Fig.15. 

 

 
Fig.15 

 

 Clearly H is a minimum s-geodetic fuzzy subgraph of the fuzzy graph G in Fig.11.  

 

Proposition 6.3. If H is a minimum s-geodetic fuzzy subgraph of a connected fuzzy graph G on n nodes, then 2 ≤ 

s-gn(H) ≤ s-gn(G) ≤ n.  

 

Proof. Since H is a non-trivial fuzzy graph, by Proposition 4.7 we get 2 ≤ s-gn(H) ≤ |V (H)|. But since H is a 

minimum s-geodetic fuzzy subgraph of G, V (H) is an sgeodetic basis for G and so s-gn(G) = |V (H)|.  

Therefore we get 2 ≤ s-gn(H) ≤ s-gn(G). Again by Proposition 4.7 we get 2 ≤ s-gn(G) ≤ n so that the result follows. 

Thus 2 ≤ s-gn(H) ≤ s-gn(G) ≤ n. 

 

Proposition 6.4. Let H be a minimum s-geodetic fuzzy subgraph of a connected fuzzy graph G. If s-gn(G) = 2 then 

the nodes of H are s-peripheral nodes of G.  

 

Proof. Since H is a minimum s-geodetic fuzzy subgraph of G, V (H) is an s-geodetic basis of G. Now by 

Proposition 4.21, if s-gn(G) = 2 then there exists s-peripheral nodes u and v such that every node of G lies on an s-

geodesic joining u and v. Therefore if s-gn(G) = 2 then {u, v} is an s-geodetic basis of G. i.e, if s-gn(G) = 2 then V 

(H) = {u, v} where u and v are s-peripheral nodes of G. 

 

Remark 6.5. The converse of Proposition 6.4 is not true. That is s-gn(G) need not be 2 even though the nodes of 

its minimum s-geodetic fuzzy subgraph are s-peripheral nodes of G.  

 

Example 6.6. Consider the fuzzy graph H given in Fig.16.  
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Fig.16 

 

Clearly H is a minimum s-geodetic fuzzy subgraph of the connected fuzzy graph G given in Fig.17.  

 

 
 

Fig.17 

 

Here V (F) = {v, w, x} is an s-geodetic basis of G that contains s-peripheral nodes of G but here s-gn(G) = 3.  

 

Proposition 6.7. The subgraph induced by the fuzzy end nodes of a fuzzy tree G : (V, σ, µ) such that G∗ is a tree is 

the minimum s-geodetic fuzzy subgraph of G. 

Proof. By Proposition 4.11, the set of all fuzzy end nodes of a fuzzy tree G such that G∗ is a tree forms an s-

geodetic basis of G. Thus the fuzzy subgraph induced by the collection of all fuzzy end nodes of G is a minimum 

s-geodetic basis of G. 

 

Remark 6.8. The converse of Proposition 6.7 is not true. That is, a fuzzy graph G need not be a fuzzy tree with G∗ 

as a tree even if its minimum geodetic fuzzy sub graph is the fuzzy sub graph induced by its fuzzy end nodes.  

 

Example 6.9. Consider the fuzzy graph G in Fig.18. 

 
Fig.18 
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 Evidently {e, f} is an s-geodetic basis for G where both e and f are fuzzy end nodes of G. Hence the fuzzy sub 

graph induced by {e, f} is the minimum s-geodetic fuzzy sub graph of G, but G is not a fuzzy tree with G∗ as a tree. 

 

VII. CONCLUSION 

 

 In this paper, we introduced s-geodesic, s-geodetic closure, s-geodetic iteration number, s-geodetic cover and s-

geodetic number of a fuzzy graph along with suitable examples and studied some of their properties. The upper 

and lower bounds for s-geodetic number of a fuzzy graph are obtained. The s-geodetic number of complete 

bipartite fuzzy graphs, fuzzy cycles and also of fuzzy trees subject to certain conditions is examined. The concept 

of extreme nodes in a fuzzy graph is defined leading to the introduction of a special type of fuzzy graph known as 

extreme s-geodesic fuzzy graph. An attempt to define a minimum s-geodetic fuzzy subgraph is also made. 

 

VIII. ACKNOWLEDGEMENT 

 

 The first author is grateful to the University Grants Commission (UGC), New Delhi, India, for providing the financial 

assistance. 

 

REFERENCES  
 

[1] Bhattacharya.P.: Some Remarks on fuzzy graphs, Pattern Recognition Lett., 6 (1987), 297-302. [2] Bhutani.K.R.: On automorphisms of fuzzy 

graphs, Pattern Recognition Lett., 9 (1989), 159-162. [3] Bhutani.K.R., Rosenfeld.A.: Fuzzy end nodes in fuzzy graphs, Inform.Sci. 152 (2003), 323-

326. [4] Bhutani.K.R.,Rosenfeld.A.: Geodesics in fuzzy graphs, Electronic Notes in Discrete Mathematics, 15 (2003), 51-54.  

[5] Bhutani.K.R.,Rosenfeld.A.: Strong arcs in fuzzy graphs, Information Sciences, 152 (2003), 319-322. 

 [6] Buckley.F.,Harary.F.: Distance in Graphs, Addison-Wesley Publishing Company, Inc.,(1990).  
[7] Chartrand.G.,Zhang.P: Extreme geodesic graphs, Czechoslovak Mathematical Journal, 52 (2002), 771-780.  

[8] Chartrand.G.,Harary.F.,Zhang.P.: On the Geodetic Number of a Graph, Networks, 39 (2001). [9] Chartrand.G.,Zhang.P.: The Geodetic Number 

of an Oriented Graph, Europ. J. Combinatorics, 21 (2000), 181-189.  
[10] Goudar.V.M.,Ashalatha.K.S.,Venkatesha,Muddebihal.M.H.: On the Geodetic Number of Line Graph, Int.J.Contemp.Math.Sciences, 7 (2012), 

2289-2295.  

[11] Harary.F.: Graph Theory, Addison-Wesley (1969) 
 [12] Harary.F., Nieminen.J.: Convexity in Graphs, J.Differential Geometry, 16 (1981), 185-190. [13] Linda.J.P.,Sunitha.M.S.: Geodesic and Detour 

distances in Graphs and Fuzzy Graphs, Scholars’ Press, (2015). 

 [14] Mathew.S.,Sunitha.M.S.: Types of arcs in a fuzzy graph, Information Sciences, 179 (2009), 1760-1768.  
[15] Mini Tom,Sunitha.M.S.: Sum Distance and Strong Sum Distance in Fuzzy Graphs, LAP Lambert Academic Publishing, (2016).  

[16] Mordeson.J.N.: Fuzzy line graphs, Pattern recognition Lett., 14 (1993), 381-384. 

 [17] Mordeson.J.N.,Nair.P.S.: Cycles and Cocycles of fuzzy graphs, Information Sciences, 90 (1996), 39-49.  
[18] Moderson. J.N.,Nair.P.S.: Fuzzy Graphs and Fuzzy Hypergraphs, Physica-Verlag, Heidelberg, (2000).  

[19] Mordeson.J.N, Yao.Y.Y.: Fuzzy cycles and fuzzy trees, The Journal of Fuzzy Mathematics, 10 (2002), 189-202.  

[20] Nagarajan.S., Chandrasekaran.M.: Characterization of fuzzy bridges and fuzzy cutnodes, International Journal of Science and Research , 3(4) 
(2014) . 

[21] Narayan.K.R.S.,Sunitha.M.S.: Connectivity in a fuzzy graph and its complement, General Mathematics Notes, 9(1) (2012), 38-43. 

 [22] Rosenfeld.A.: Fuzzy graphs, In: L.A.Zadeh, K.S.Fu and M.Shimura(Eds), Fuzzy Sets and their Applications, Academic Press, New York, 
(1975), 77- 95. 

 [23] Rosenfeld.A.: Fuzzy graphs, In:Fuzzy Sets and their Application to Cognitive and Decision Processes, Academic Press, (1975). 

 [24] Sameena.K.,Sunitha.M.S.: Strong arcs and maximum spanning trees in a fuzzy graph, Int.J.Math.Sci. 5 (2006), 17-20. 
 [25] Somasundaram.A., Somasundaram.S.: Domination in fuzzy graphs-I, Pattern Recognition Letters 19 (1998), 787-791. 

 [26] Sunitha.M.S.,Vijayakumar.A.: Some metric aspects of fuzzy graphs, Proceedings of the Conference on Graph Connections, CUSAT, Allied 

Publishers, (1999), 111-114.  
[27] Sunitha.M.S.,Vijayakumar.A.: A characterization of fuzzy trees, Information Sciences, 113 (1999), 293-300. 

 [28] Suvarna.N.T.,Sunitha.M.S.: Convexity and Types of Arcs & Nodes in Fuzzy Graphs, Scholar’s Press,(2015) 

 [29] Yeh.R.T.,Bang.S.Y.: Fuzzy relations, fuzzy graphs and their application to clustering analysis, In Fuzzy sets and their Application to Cognitive 
and Decision Processes, Zadeh L.A.,Fu.K.S.ShimuraM.Eds, Academic Press, New York, (1975), 125-149. 

 [30] Zadeh.L.A.: Fuzzy sets, Information and Control, 8 (1965), 338-353.  

http://www.ijarset.com/

