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ABSTRACT: Mathematical models of sections of the main canal, based on non-linear differential equations of Saint-

Venant, describing the transient motion of the water flow in them, have been developed. The restrictions for the 

implementation of the optimal control problem in the canal, hydraulic structures and lateral-water intakes are 

determined. Criteria for optimal control have been developed for canals, hydraulic structures and lateral-water intakes. 

The necessary optimality conditions for the system of Saint-Venant equations are obtained, when controlling within the 

region of restrictions. The developed mathematical models, criteria for optimal control and the necessary conditions for 

optimality will provide water consumers with a minimum of water resources losses. 
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I.INTRODUCTION 

 

Currently, there is no single systematic approach to modeling the dynamics of waterworks facilities, only there is a 

wide class of mathematical models of individual objects of varying degrees of complexity, so the choice of 

mathematical models that will describe the complex processes of water supply and water distribution in waterworks 

facilities with the required degree of accuracy is a very difficult task problematic. 

 

Dynamic models with distributed parameters are mainly described by the Saint-Venant equation and take into account 

the distribution of the flow motion parameters in sections of the main canal along the length and time. 

 

The condition of the main canal section is characterized by an unsteady flow of water and is described by the system of 

differential equations of Saint-Venant in the form of energy conservation laws [1,2,3] 
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 ;  txQQ ,  – water flow rate;  txzz ,  – the ordinate of the free surface; g – 

gravitational constant; i  – bottom slope;  zBB   – flow width over a living section surface;  z  – living 

cross-sectional area of the stream;  zcc   – propagation speed of small waves;  zKK  – flow rate module. 

 

Partial differential equations of the hyperbolic type in the system (1) are the equations of conservation of mass and 

momentum of the flow and are a mathematical model of the unsteady movement of water in the open channel section. 
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The flow rate and the ordinate of the free surface are selected here as functions determining the flow ),( txz . 

Independent variables are the longitudinal coordinate x  and time t . 

 

The riverbed is set by the ordinate of the bottom )(0 xz  and cross-sectional width ),( txB  on distance ),( txz  

(vertically) from the bottom of the channel, then the depth of the stream:      txztxztzh ,,, 0 ; flow cross-

sectional area:    
h

dzzxBtx
0

,, ; average speed of flow: 



Q

 ; small wave propagation speed: 

Bgc / ; bottom slope dxdzi 0 . 

 

The characteristic form of equations (1) has the form [3,4] 
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The initial conditions are specified as 

 0 0( ,0) ( ),             ( ,0) ( ), z x z x Q x Q x   (3) 

where )(0 xQ , )(0 xz - knows functions. 

 

Boundary conditions at points 0x and lx   written as follows 

     1 1 1 1
0, 0, ,   ( )Q t zg t u t , (4) 

    2 2 2
, , ,   ( ) ,Q l t zg l t u t  

where     1 1 1 1 1 1
( ) ,2 0,b u t z x t zg g t  ,  

    2 2 2 2 2 2
( ) 2 0,b u t z ug g t t  , 

( ), 1,2i iu u t i  – control functions applied at the boundary points (the height of the openings of the water gates), 

, 1,2ib i   – the width of the openings of the water gates, 1( , )z x l  – the ordinate of the free surface of the water stream 

of the upstream of the first water gate. 

The water flow rate at the points of intake of the canal site, the right side of equation (1) has the form 

 
1

( )( , ) ( )
N

i i
i

t Tq x t q x a l


   . (5) 

 
II. METHODS AND RESULTS 

 

In these models, the analytical solution of equations (1), (2) and (3) under the indicated boundary conditions is absent, 

since the hydraulic parameters of the water flow is a nonlinear function depending on the shape of the cross-section of 

the canal site. 
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From the expression of the lateral water intakes (5), it is seen that consumers are provided with uniform water supply in 

time in the form of a step function. With step functions, to solve the problem of optimal control of water distribution, it 

is necessary to formulate criteria for the quality of water distribution in the main canals of irrigation systems. 

 

The processes occurring in the main canals relate to systems with distributed parameters, and the optimal distribution of 

water between consumers and the main canals relates to the tasks of optimal control of systems with distributed 

parameters. For them, we formulate the criteria for the quality of water distribution as criteria for the quality of control 

of a system with distributed parameters. 

 

Criteria for the quality of control of a site of the main canal as a system with distributed parameters are generally 

written in the form of a sum of integral functional [3,4] 


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where , 1,...,4F ii  – given continuous functions of their arguments, the first component representing quality criteria 

for distributed control actions, the second and third for boundary controls, and the fourth for the final states of the 

controlled process. 

 

Canal site. The quality criterion for hydraulic processes of water distribution in the canal site can be written as follows 

  
2

, ,
1

0 0

T l
I z x t z dxdt


       

where  ,z x t  – the actual change in water level in the canal site; 
*z - given value of water level. 

 

Functional (7) shows the quality of the change in water level in the canal site during the entire process of water 

distribution. The solution to the problem of minimizing functional (7) is to reduce the excessive fluctuation of water 

levels in the canal site. 

 

The next quality criterion is the change in the water level in the canal site is the integral deviation of the water level at 

the end of the process T  from the given distribution of water level *( )z x  [5] 

  
2

, ( ) ,  
2

0

l
I z x T z x dx      

 

Similarly for water flow rate in the canal site 

  
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, , 
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T l
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l
I Q x T Q x dx      

where  ,Q x t  – the actual change in water flow rate in the canal site; *Q  - the given value of water flow rate.  
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Functionals (9) and (10) show the quality of the change in water flow rate in the canal site at the beginning of the 

process and the end of the water distribution process. The solution to the problem of minimizing functionals (9) and (10) 

is to reduce excessive fluctuations in water flow rate in the canal site. 

The main restrictions on hydraulic structures are  


min max

( ) ( ) ( )i i ia t a t a t   

where 
min ( )a ti , max ( )ia t  minimum and maximum permissible openings of the water gates of hydraulic structures. 

 

Let us consider the formulation of the problem of optimal control of the distribution of water in the canals of irrigation 

systems under conditions of uniform water supply to consumers, using the mathematical models developed above. 

 

Lateral-water intakes. For lateral water intakes, the quality standard of the water distribution process can be used to 

choose the root-mean-square integral deviation of the actual water flow rate from the planned (limited) values for the 

period  0,T  water distribution [6] 

   



N

j

T

jj dtqtqI
1 0

2

1                 ,  

where ( )jq t   the actual value of water flow rate j  th lateral water intake; 
*( )jq t   the planned value of water flow 

rates j  th water intake. 

 

An analog of criterion (12) is the expression 

  2 j jI q t q   

Technological restrictions on the operating modes of the canal sites are of the form [7] 


 
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min max

min max
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where min max,i iQ Q  – minimum and maximum allowable water flow rate for i th canal site; 
maxmin, ii zz

 - minimum and 

maximum permissible ordinates of the free surface of the water on i thcanal site. 

 

The main objective of the task, in this case, is to minimize fluctuations in the flow rate of the lateral-water intakes and 

the water level in the canal site while providing a discrete water supply to the lateral-water intakes by controlling the 

water flow rate at the beginning of the canal site [6,7]: 


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on conditions that 
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control actions: 
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The restrictions on the operation modes of the canal sites are of the form 


 

 
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The minimization problem (16) on condition (17) with the help of the control action (18) and with constraints (18) is 

the problem of controlling quasilinear systems with distributed parameters with state restrictions. 

 

Expanding (1) in a Taylor power series in a neighbourhood of the points of the optimal trajectory and discarding the 

terms of the expansion above the first order of smallness, we obtain the equation in variations 


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In exactly the same way for variation of the optimality criterion (6) we obtain 
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We introduce conjugate variables or Lagrange multipliers using expressions 
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      
      

      

      
     

         

 
 

 

Subtracting (23) - (25) from (22), we obtain a new record for the variation of the functional 
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с

с
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T G G
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 
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        
               
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2
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1
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0

0

,

0
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dx dt
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l
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dx dt
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  
 


 

  
 
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    
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       

 

where 1H  и 2H  – Hamiltonians are defined as follows 


1 1 2 2 , 1, 2i i i i iH f f i     

Under differentiation, the Hamiltonians 
iH  it must be taken into account that 1

if  independent of 
iQ and 

iz , 

2

if independent of iq , which follows from the main equation. 

 

We integrate in parts the following expressions 


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 
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1
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,
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T

l
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             

     


2 2

1

1

1 11 1

1 1 1 1 1 10
10 0 0

,

l lT T
T

l

Q
dx dt Q Q dt dx

x t
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     
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
2 2

1 1

1

1 12 2

2 2 2 2 2 20
20 0

,

l lT T
T

l l

z
dx dt z z dt dx

x t

 
   

     
             

     
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     

 

Substituting (28) - (35) in (26), we obtain 


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    
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
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  
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


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l
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
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     
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 
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2
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2
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l

l
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

Now in (36) the influence of variations 1,u 2 ,u 1 2,Q Q   on variations I  expressed explicitly. Since it was 

assumed that these variations are arbitrary, the remaining necessary conditions for optimality of controls 1 2 1 2, , ,u u Q Q  

are obtained by equating to zero the coefficients of these variations. 

 

From expression (36) it can be seen that the explicit dependence of the variation of the functional I from 

   1 1 2 2, , ,z x t z x t  ,    1 1 2 2, , ,Q x t Q x t   disappear, if  2 ,j

i x t  satisfy the conditions 



1

0 0

2

0 0

,

, 1, 2,

i i i

i i i i

i i i

i i i i

H H

x z x z
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i

x z x z





     
    

      

     
     

      

 

since in this case, the expressions in square brackets of double integrals are equal to zero. Now, if at the end of the 

process, the conjugate variables satisfy the conditions 
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    1 2, 0, , 0, 1,2i i i ix T x T i     

then the last two integrals in (36) are always zero. 

 

For variation conditions (1) - (3), we obtain the expressions 
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Similarly, for variation of the boundary conditions 
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It follows from (36) for the variation of the functions that the conjugate variables satisfy the following conjugation 

conditions 
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Given certain equations for conjugate variables, conjugation conditions, and boundary conditions, we obtain an 

expression for the variation of the functional 
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We determined explicit expressions of the variation of the functional from the variation of controls 
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. Since it was assumed that these variations are arbitrary, the necessary condition for 

optimality is the equality to zero of the expressions for these variations. 

 

Thus, the maximum principle for the optimal control problem under consideration is formulated as follows: in order to 
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When controlling within the region of constraints, the corresponding values in the left-hand sides of equalities (47) - 

(50) must be non-positive if the upper bounds are reached [8]. 

 

When controlling inside the constraint region for the considered problem (16) - (18), the variation of the optimality 

criterion has the form [9] 
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where 
1 2

1 2H f f   .  

 

Computing the derivative of the Hamiltonian H by Q , we get 
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Now we have defined explicit expressions of the variation of the functional from the variation of controls 

 1δ ,u t  2δu t . Since it was assumed that these variations are arbitrary, a necessary condition for optimality is the 

equality to zero of the expressions for these variations. 

 

Thus, the final necessary optimality conditions for the system of Saint-Venant equations, when controlled within the 

region of constraints, have the form 
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In the case of achieving control of its upper (lower) boundaries, the corresponding quantities in the left-hand sides of 

expressions (53), (54) must be non-positive (non-negative). 

 
III. CONCLUSION 

 
The mathematical models of the main canals of irrigation systems are analysed, the essence of which is a stepwise 

change in flow rate through the hydraulic structures of the canal. 

 

The criteria for the quality of water distribution in the main canal site and lateral-water intakes, as well as the main 

restrictions on the operating modes of the sites and hydraulic structures of the main canal, are determined. 

For the model of unsteady water movement in the main canals of irrigation systems, when controlled within the area of 

restrictions, the necessary conditions for the optimality of water distribution are determined. 
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