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ABSTRACT: In our paper we study a class ,which consists of analytic and univalent 

functions with negative coefficients in the open unit disk U={z∈C:|z|<1}defined by Hadamard 

product (or convolution) with HARBI - Operator, we obtain coefficient bounds and extreme points for this class. Also 

distortion theorem using fractional calculus techniques and some results for this classare obtained. 
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     I.INTRODUCTION 

 

The integral  HARBI-operator of f ∈ S for λ > −1, 𝜇 ≥ 0 is denoted byHλ

μ
 and defined as following: 

Hλ

μ
f z =

(λ+1)μ

┌(μ)
 tλ(log

1

t
)

μ−1 f(zt )

t
dt

1

0
                                   (1) 

The operator is known as the Komatu operator[2].A function f ∈ S ,  is said to be in the class 

 if and only if it satisfies the inequality 

  (2) 

 

For some C andμ ≥ 0 , for all  . 

The class AH(α, 0,1 − γ, λ, 0) was introduced b Altintas[1] who obtained several results concerning this class .The class 

AH α, 0, b, λ, 0  was introduced by Srivastava and Owa[3]. 

The class AH(α, β, b, λ, 0) was introduced by Atshan and Kulkarni[1]. 

Definition (1):We say that the function f of complex variable is analytic in a domain D if is differentiable at every 

point in that domain D. 

Definition (2): A function f analytic in a domain D is said to be univalent there if it does not take the same value twice 

that is f(z1) ≠ f(z2) for all pairs of distinct points z1 and z2 in D. Definition (3): A function f ∈ A is said to be convex 

function of order α if and only if  
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We denote the class of all convex functions of order α in U byC(α). 

Note that  S∗ 0 = S∗ , C 0 = C and C ⊂ S∗ ⊂ A, and the Koebe function is starlike but not convex, where the Koebe 

function given by 

K z =
z

(1 − z)2
=  nzn

∞

n=1

 

is the most famous function in the class A , which maps U onto C minus a slit along  the negative real axis from −
1

4
 

to −∞ 

 

 
2-Main Results 

In the following theorem, we derive the coefficient inequality for the class AH(α, β, b, λ, μ).  

Theorem (1): Let f ∈ S .Then f is in the class AH(α, β, b, λ, μ) if and only if 

                                  (3) 

The result (3) is sharp. 

Proof: Assume that   .Then, we find from (.2) that 

 

.  

If we choose  to be the real and let , we get 

1 −   β + n(1 − β + αn − α) 

∞

n=2

(
λ + 1

λ + n
)μan ≥ 1 −  b , 

Which is equivalent to (3).conversely, assume that (3) is true. Then, we have 
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. 

The implies that . The result (3) is sharp for the function 

                         (4) 

 

In the following theorem, we obtain interesting properties of the class 

 . 

 

Theorem (2):Let .Then 

                      (5) 

 

Proof: It is easy to see that , for  , 

.  

Hence  
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.  

Theorem(3): Let  

be in the class .Then the function 

K z =  difi(z)

m

i=1

 , ( di = 1)

m

i=1

 

is in the class . 

Proof: By definition of K(z), we have 

 

Thus, we have from Theorem(.1) 

 

 

Which completes the proof of Theorem (3?) 
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