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ABSTRACT:Alternative models are formulated for calculating the power flow in a three-phase network of an 

electric power system in order to evaluate the effect of a static reactive power compensator, which is an 

integral part of devices of controlled flexible AC systems. A detailed mathematical model has been developed 

that corresponds to a three-phase thyristor controlled reactor; the influence of a static compensator on the 

operation of unbalanced three-phase power systems has been evaluated. 
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The installation of compensating devices on power lines and load nodes is used to improve voltage modes, 

increase transmission system capacity, and increase the reserves of static and dynamic stability. These devices 

use static unregulated devices - capacitor banks, adjustable synchronous compensators, astatic thyristor 

regulated reactive power sources - FACTS devices (Flexible Alternative Current Transmission System)[1]. 

 

I. STATIC REACTIVE POWER COMPENSATOR SVC IN A THREE-PHASE NETWORK. 

 

In order to evaluate the effect of the SVC static reactive power compensator on the operation of unbalanced 

three-phase power systems, a more detailed model of this FACTS device should be developed than for single-

phase ones. 

Consider the SVC model, which corresponds to a three-phase reactor with thyristor control TCR, connected 

according to the triangle circuit and installed in parallel with a three-phase capacitor bank, which, in turn, is 

connected according to the "star" scheme. 

In fig. 1 shows equivalent circuits for capacitor banks and SVCs. We assume that individual TCR modules are 

individually controlled using lead angles of thyristors β. 
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a)                        b) 

Fig. 1. The equivalent circuit of the battery of capacitors (a) and reactors with thyristor control TCR in a three-

phase network (b). 

Consider two SVC models for power flow. In this case, in the first model, we will use the values of controlled 

reactive conductivity BSVC as state variables, and in the second model, the values of the lead angles of 

thyristors β. 

 

II. Model 1 

The use of BSVC controlled reactance values in calculating power flow. 

As shown in fig. 1, a three-phase battery of capacitors connected in a star configuration may have an 

alternative representation in the form of an equivalent circuit connected in a triangular pattern. The three-phase 

SVC model for the first three-phase bus is described by the following matrix equation [2]: 

 

𝐼1
𝑎

𝐼1
𝑏

𝐼1
𝑐

 =
1

3
 

𝑗𝐵𝑆𝑉𝐶
𝑎𝑎 −𝑗𝐵𝑆𝑉𝐶

𝑎𝑏 −𝑗𝐵𝑆𝑉𝐶
𝑐𝑎

−𝑗𝐵𝑆𝑉𝐶
𝑏𝑎 𝑗𝐵𝑆𝑉𝐶

𝑏𝑏 −𝑗𝐵𝑆𝑉𝐶
𝑏𝑐

−𝑗𝐵𝑆𝑉𝐶
𝑐𝑎 −𝑗𝐵𝑆𝑉𝐶

𝑐𝑏 𝑗𝐵𝑆𝑉𝐶
𝑐𝑐

  

𝑈1
𝑎

𝑈1
𝑏

𝑈1
𝑐

 ,                                    (1) 

where 

𝐵𝑆𝑉𝐶
𝑝ℎ1𝑝ℎ2 =

 
 

 
𝐵𝐶
𝑝ℎ1

∆𝐵𝐶
 𝐵𝐶

𝑘 −  𝐵𝑇𝐶𝑅
𝑝ℎ1𝑘 ,    𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑝ℎ1 = 𝑝ℎ2𝑘=𝑎,𝑏,𝑐

𝑖≠𝑝ℎ1

𝑘=𝑎,𝑏,𝑐
𝑖≠𝑝ℎ1

 −
𝐵𝐶
𝑝ℎ1𝐵𝐶

𝑝ℎ2

∆𝐵𝐶
+ 𝐵𝑇𝐶𝑅

𝑝ℎ1𝑝ℎ2 ,                        𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑𝑝ℎ1 ≠ 𝑝ℎ2

 (2) 

 

𝐵𝑇𝐶𝑅
𝑝ℎ1𝑝ℎ2 =

2(𝜋 − 𝛽𝑇𝐶𝑅
𝑝ℎ1𝑝ℎ2 − sin⁡(2𝛽𝑇𝐶𝑅

𝑝ℎ1𝑝ℎ2 ))

𝜋𝜔𝐿𝑇𝐶𝑅
𝑝ℎ1𝑝ℎ2

;                 

𝐵𝐶
𝑝ℎ1 = 𝜔𝐶𝐶

𝑝ℎ1 ;  ∆𝐵𝐶 =  𝐵𝐶
𝑘

𝑘=𝑎,𝑏,𝑐

.               

 
The indicators ph1 and ph2 are used in (2) to indicate phases a, b, and c. Note that the parameters with double 

exponents ph1 and ph2 correspond to the parameters of the module of the FACTS device connected between 

phases ph1 and ph2. 
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The equations of a three-phase power flow for a power line with an connected SVC can be derived on the 

basis of an equivalent circuit (Fig. 1), when the variable reactance 𝐵𝑆𝑉𝐶
𝑝ℎ1𝑝ℎ2

 is considered as an alternating state. 

To limit the amplitude of the nodal voltage at a given value, the reactance should be automatically controlled 

using an iterative algorithm. 

From the diagrams in Fig. 1 and formulas (1), the equations of power flow in a three-phase line with a reactive 

power compensator follow [3]: 

𝑃1
𝑝ℎ1 = −𝑈1

𝑝ℎ1  𝑈1
𝑘𝐵𝑆𝑉𝐶

𝑝ℎ𝑘
𝑘=𝑎,𝑏,𝑐
𝑘≠𝑝ℎ

sin 𝛿1
𝑝ℎ
− 𝛿1

𝑘 ;(3) 

𝑄1
𝑝ℎ1 = − 𝑈1

𝑝ℎ 
2
𝐵𝑆𝑉𝐶
𝑝ℎ𝑝ℎ + 𝑈1

𝑝ℎ  𝑈1
𝑘𝐵𝑆𝑉𝐶

𝑝ℎ𝑘
𝑘=𝑎,𝑏,𝑐
𝑘≠𝑝ℎ

cos 𝛿1
𝑝ℎ − 𝛿1

𝑘 ;(4) 

whereph = a,b,c. 

 

By linearizing equations (3), (4), we arrive at the following iterated linearized equation: 

 

 
 
 

∆𝑃1
𝑎

∆𝑃1
𝑏

∆𝑃1
𝑐

∆𝑄1
𝑎

∆𝑄1
𝑏

∆𝑄1
𝑐 

 
 
 

(𝑖)

=

 

 
 
 
 
 
 
 
 
 

𝜕𝑃1
𝑎

𝜕𝛿1
𝑎

𝜕𝑃1
𝑎

𝜕𝛿1
𝑏

𝜕𝑃1
𝑎

𝜕𝛿1
𝑐

𝜕𝑃1
𝑎

𝜕𝛽𝑆𝑉𝐶
𝑎𝑏 0

𝜕𝑃1
𝑎

𝜕𝛽𝑆𝑉𝐶
𝑐𝑎

𝜕𝑃1
𝑏

𝜕𝛿1
𝑎

𝜕𝑃1
𝑏

𝜕𝛿1
𝑏

𝜕𝑃1
𝑏

𝜕𝛿1
𝑐

𝜕𝑃1
𝑏

𝜕𝛽𝑆𝑉𝐶
𝑎𝑏

𝜕𝑃1
𝑏

𝜕𝛽𝑆𝑉𝐶
𝑏𝑐 0

𝜕𝑃1
𝑐

𝜕𝛿1
𝑎

𝜕𝑃1
𝑐

𝜕𝛿1
𝑏

𝜕𝑃1
𝑐

𝜕𝛿1
𝑐 0

𝜕𝑃1
𝑐

𝜕𝛽𝑆𝑉𝐶
𝑏𝑐

𝜕𝑃1
𝑐

𝜕𝛽𝑆𝑉𝐶
𝑐𝑎

𝜕𝑄1
𝑎

𝜕𝛿1
𝑎

𝜕𝑄1
𝑎

𝜕𝛿1
𝑏

𝜕𝑄1
𝑎

𝜕𝛿1
𝑐

𝜕𝑄1
𝑎

𝜕𝛽𝑆𝑉𝐶
𝑎𝑏 0

𝜕𝑄1
𝑎

𝜕𝛽𝑆𝑉𝐶
𝑐𝑎

𝜕𝑄1
𝑏

𝜕𝛿1
𝑎

𝜕𝑄1
𝑏

𝜕𝛿1
𝑏

𝜕𝑄1
𝑏

𝜕𝛿1
𝑐

𝜕𝑄1
𝑏

𝜕𝛽𝑆𝑉𝐶
𝑎𝑏

𝜕𝑄1
𝑏

𝜕𝛽𝑆𝑉𝐶
𝑏𝑐 0

𝜕𝑄1
𝑐

𝜕𝛿1
𝑎

𝜕𝑄1
𝑐

𝜕𝛿1
𝑏

𝜕𝑄1
𝑐

𝜕𝛿1
𝑐 0

𝜕𝑄1
𝑐

𝜕𝛽𝑆𝑉𝐶
𝑏𝑐

𝜕𝑄1
𝑐

𝜕𝛽𝑆𝑉𝐶
𝑐𝑎

(𝑖)

 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

∆𝛿1
𝑎

∆𝛿1
𝑏

∆𝛿1
𝑐

∆𝛽𝑆𝑉𝐶
𝑎𝑏

∆𝛽𝑆𝑉𝐶
𝑏𝑐

∆𝛽𝑆𝑉𝐶
𝑐𝑎  

 
 
 
 
 

(𝑖)

;                    (5) 

 

Elements corresponding to the partial derivatives of active and reactive powers with respect to the phase 

angles of the nodal voltage are: 

𝜕𝑃𝜌 ,𝑙
𝑝ℎ1

𝜕𝛿𝜌 ,𝑙
𝑝ℎ1

= −𝑄𝜌
𝑝ℎ1𝑠𝑢𝑏𝑡 −  𝑈𝑙

𝑝ℎ1 
2
𝐵𝜌𝜌
𝑝ℎ1𝑝ℎ2 ,   

𝜕𝑃𝜌 ,𝑙
𝑝ℎ1

𝜕𝑈𝜌 ,𝑙
𝑝ℎ1
𝑈𝜌,𝑙
𝑝ℎ1 = 𝑃𝜌

𝑝ℎ1𝑠𝑢𝑏𝑡 −  𝑈𝜌
𝑝ℎ1 

2
𝐺𝜌𝜌
𝑝ℎ1𝑝ℎ2 ,   (6) 

𝜕𝑄𝜌 ,𝑙
𝑝ℎ1

𝜕𝛿𝜌 ,𝑙
𝑝ℎ1

= 𝑃𝜌
𝑝ℎ1𝑠𝑢𝑏𝑡 −  𝑈𝑙

𝑝ℎ1 
2
𝐺𝜌𝜌
𝑝ℎ1𝑝ℎ2 ,    

𝜕𝑄𝜌 ,𝑙
𝑝ℎ1

𝜕𝑈𝜌 ,𝑙
𝑝ℎ1
𝑈𝜌,𝑙
𝑝ℎ1 = 𝑄𝜌

𝑝ℎ1𝑠𝑢𝑏𝑡 −  𝑈𝜌
𝑝ℎ1 

2
𝐵𝜌𝜌
𝑝ℎ1𝑝ℎ2  ,(7) 

- forρ=1,2 and ph1 ≠ ph: 

𝜕𝑃𝜌 ,𝑙
𝑝ℎ1

𝜕𝛿𝜌 ,𝑙
𝑝ℎ2

= 𝑈𝜌
𝑝ℎ1𝑈𝜌

𝑝ℎ2  𝐺𝜌𝜌
𝑝ℎ1𝑝ℎ2𝑠𝑖𝑛 𝛿𝜌

𝑝ℎ1 − 𝛿𝜌
𝑝ℎ2 − 𝐵𝜌𝜌

𝑝ℎ1𝑝ℎ2𝑐𝑜𝑠 𝛿𝜌
𝑝ℎ1 − 𝛿𝜌

𝑝ℎ2  ,           (8) 

𝜕𝑄𝜌 ,𝑙
𝑝ℎ1

𝜕𝛿𝜌 ,𝑙
𝑝ℎ2

= −𝑈𝜌
𝑝ℎ1𝑈𝜌

𝑝ℎ2  𝐺𝜌𝜌
𝑝ℎ1𝑝ℎ2𝑐𝑜𝑠 𝛿𝜌

𝑝ℎ1 − 𝛿𝜌
𝑝ℎ2 + 𝐵𝜌𝜌

𝑝ℎ1𝑝ℎ2𝑠𝑖𝑛 𝛿𝜌
𝑝ℎ1 − 𝛿𝜌

𝑝ℎ2  ,        (9) 

- for the remaining elements: 

𝜕𝑃1,𝑙
𝑝ℎ1

𝜕𝛿
2,𝑙
𝑝ℎ2

= 𝑈1
𝑝ℎ1𝑈2

𝑝ℎ2  𝐺12
𝑝ℎ1𝑝ℎ2𝑠𝑖𝑛 𝛿1

𝑝ℎ1 − 𝛿2
𝑝ℎ2 − 𝐵12

𝑝ℎ1𝑝ℎ2𝑐𝑜𝑠 𝛿1
𝑝ℎ1 − 𝛿2

𝑝ℎ2  ,           (10) 

𝜕𝑄1,𝑙
𝑝ℎ1

𝜕𝛿
2,𝑙
𝑝ℎ2

= −𝑈1
𝑝ℎ1𝑈2

𝑝ℎ2  𝐺12
𝑝ℎ1𝑝ℎ2𝑐𝑜𝑠 𝛿1

𝑝ℎ1 − 𝛿2
𝑝ℎ2 + 𝐵12

𝑝ℎ1𝑝ℎ2𝑠𝑖𝑛 𝛿1
𝑝ℎ1 − 𝛿2

𝑝ℎ2  ,      (11) 
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𝜕𝑃2,𝑙
𝑝ℎ1

𝜕𝛿
1,𝑙
𝑝ℎ2

= 𝑈1
𝑝ℎ1𝑈2

𝑝ℎ2  𝐺21
𝑝ℎ1𝑝ℎ2𝑠𝑖𝑛 𝛿2

𝑝ℎ1 − 𝛿1
𝑝ℎ2 − 𝐵21

𝑝ℎ1𝑝ℎ2𝑐𝑜𝑠 𝛿2
𝑝ℎ1 − 𝛿1

𝑝ℎ2  ,           (12) 

𝜕𝑄2,𝑙
𝑝ℎ1

𝜕𝛿
1,𝑙
𝑝ℎ2

= −𝑈1
𝑝ℎ1𝑈2

𝑝ℎ2  𝐺21
𝑝ℎ1𝑝ℎ2𝑐𝑜𝑠 𝛿2

𝑝ℎ1 − 𝛿1
𝑝ℎ2 + 𝐵21

𝑝ℎ1𝑝ℎ2𝑠𝑖𝑛 𝛿2
𝑝ℎ1 − 𝛿1

𝑝ℎ2  .      (13) 

Other elements of the Jacobian in (5) are equal: 

𝜕𝑃1
𝑝ℎ

𝜕𝐵𝑆𝑉𝐶
𝑝ℎ𝑘 𝐵𝑆𝑉𝐶

𝑝ℎ𝑘 = −𝑈1
𝑝ℎ𝑈1

𝑘𝐵𝑆𝑉𝐶
𝑝ℎ𝑘 sin 𝛿1

𝑝ℎ − 𝛿1
𝑘 ,(14) 

𝜕𝑄1
𝑝ℎ

𝜕𝐵𝑆𝑉𝐶
𝑝ℎ𝑘 𝐵𝑆𝑉𝐶

𝑝ℎ𝑘 = −2 𝑈1
𝑝ℎ 

2
𝐵𝑆𝑉𝐶
𝑝ℎ𝑘 + 𝑈1

𝑝ℎ𝑈1
𝑘𝐵𝑆𝑉𝐶

𝑝ℎ𝑘 cos 𝛿1
𝑝ℎ − 𝛿1

𝑘 .(15) 

 

After an estimate for the i-th iteration is obtained on the basis of the iterated linearized equations for SVC, it is 

combined with the linearized equation (16), which represents the EPS proper, and then a new set of state 

variables is calculated. 

 
∆𝐏𝑙

𝑝ℎ

∆𝐐
𝑙
𝑝ℎ 

 𝑖 

=

 

 
 

𝜕𝐏𝑙
𝑝ℎ

𝜕𝛅𝑙
𝑝ℎ

𝜕𝐏𝑙
𝑝ℎ

𝜕𝐔𝑙
𝑝ℎ 𝐔𝑙

𝑝ℎ

𝜕𝐐𝑙
𝑝ℎ

𝜕𝛅𝑙
𝑝ℎ

𝜕𝐐𝑙
𝑝ℎ

𝜕𝑼𝑙
𝑝ℎ 𝐔𝑙

𝑝ℎ

 

 
 

 𝑖 

 
𝛥𝛅𝑙

𝑝ℎ

Δ𝐔
𝑙
𝑝ℎ

𝐔
𝑙
𝑝ℎ

 

 𝑖 

.                                       (16) 

SVC reactance values are updated using the following expression: 

 𝐵𝑆𝑉𝐶
𝑝ℎ𝑘 

(𝑖)
=  𝐵𝑆𝑉𝐶

𝑝ℎ𝑘 
(𝑖−1)

+
∆𝐵𝑆𝑉𝐶

𝑝ℎ𝑘

𝐵𝑆𝑉𝐶
𝑝ℎ𝑘

 𝐵𝑆𝑉𝐶
𝑝ℎ𝑘 

(𝑖−1)
. 

This calculation completes the i-th iteration, then a check is made on the convergence of the 

equations of three-phase unbalanced power. If the convergence criterion is not met, a new iteration is 

performed. 

 

III. Model 2 

This alternative SVC model is implemented using lead angles of thyristors, which are used as state variables. 

In this setting, the iterated linearized SVC equation takes the form: 

 

  
 

∆𝑃1
𝑎

∆𝑃1
𝑏

∆𝑃1
𝑐

∆𝑄1
𝑎

∆𝑄1
𝑏

∆𝑄1
𝑐 

  
 

 𝑖 

=

 

 
 
 
 
 
 
 
 
 

𝜕𝑃1
𝑎

𝜕𝛿1
𝑎

𝜕𝑃1
𝑎

𝜕𝛿1
𝑏

𝜕𝑃1
𝑎

𝜕𝛿1
𝑐

𝜕𝑃1
𝑎

𝜕𝐵𝑆𝑉𝐶
𝑎𝑏 𝐵𝑆𝑉𝐶

𝑎𝑏 0
𝜕𝑃1

𝑎

𝜕𝐵𝑆𝑉𝐶
𝑏𝑐 𝐵𝑆𝑉𝐶

𝑐𝑎

𝜕𝑃1
𝑏

𝜕𝛿1
𝑎

𝜕𝑃1
𝑏

𝜕𝛿1
𝑏

𝜕𝑃1
𝑏

𝜕𝛿1
𝑐

𝜕𝑃1
𝑏

𝜕𝐵𝑆𝑉𝐶
𝑎𝑏 𝐵𝑆𝑉𝐶

𝑎𝑏 𝜕𝑃1
𝑏

𝜕𝐵𝑆𝑉𝐶
𝑏𝑐 𝐵𝑆𝑉𝐶

𝑏𝑐 0

𝜕𝑃1
𝑐

𝜕𝛿1
𝑎

𝜕𝑃1
𝑐

𝜕𝛿1
𝑏

𝜕𝑃1
𝑐

𝜕𝛿1
𝑐 0

𝜕𝑃1
𝑐

𝜕𝐵𝑆𝑉𝐶
𝑏𝑐 𝐵𝑆𝑉𝐶

𝑏𝑐 𝜕𝑃1
𝑐

𝜕𝐵𝑆𝑉𝐶
𝑐𝑎 𝐵𝑆𝑉𝐶

𝑐𝑎

𝜕𝑄1
𝑎

𝜕𝛿1
𝑎

𝜕𝑄1
𝑎

𝜕𝛿1
𝑏

𝜕𝑄1
𝑎

𝜕𝛿1
𝑐

𝜕𝑄1
𝑎

𝜕𝐵𝑆𝑉𝐶
𝑎𝑏 𝐵𝑆𝑉𝐶

𝑎𝑏 0
𝜕𝑄1

𝑎

𝜕𝐵𝑆𝑉𝐶
𝑐𝑎 𝐵𝑆𝑉𝐶

𝑐𝑎

𝜕𝑄1
𝑏

𝜕𝛿1
𝑎

𝜕𝑄1
𝑏

𝜕𝛿1
𝑏

𝜕𝑄1
𝑏

𝜕𝛿1
𝑐

𝜕𝑄1
𝑏

𝜕𝐵𝑆𝑉𝐶
𝑎𝑏 𝐵𝑆𝑉𝐶

𝑎𝑏 𝜕𝑄1
𝑏

𝜕𝐵𝑆𝑉𝐶
𝑏𝑐 𝐵𝑆𝑉𝐶

𝑏𝑐 0

𝜕𝑄1
𝑐

𝜕𝛿1
𝑎

𝜕𝑄1
𝑐

𝜕𝛿1
𝑏

𝜕𝑄1
𝑐

𝜕𝛿1
𝑐 0

𝜕𝑄1
𝑐

𝜕𝐵𝑆𝑉𝐶
𝑏𝑐 𝐵𝑆𝑉𝐶

𝑏𝑐 𝜕𝑄1
𝑐

𝜕𝐵𝑆𝑉𝐶
𝑐𝑎 𝐵𝑆𝑉𝐶

𝑐𝑎

 

 
 
 
 
 
 
 
 
 

 𝑖 

 

 
 
 
 
 
 
 

∆𝛿1
𝑎

∆𝛿1
𝑏

∆𝛿1
𝑐

∆𝐵𝑆𝑉𝐶
𝑎𝑏

𝐵𝑆𝑉𝐶
𝑎𝑏

∆𝐵𝑆𝑉𝐶
𝑏𝑎

𝐵𝑆𝑉𝐶
𝑏𝑎

∆𝐵𝑆𝑉𝐶
𝑐𝑎

𝐵𝑆𝑉𝐶
𝑐𝑎  

 
 
 
 
 
 
 

 𝑖 

;          

(17) 

The new Jacobian elements in the linearized equation have the following form: 

𝜕𝑃1
𝑝ℎ

𝜕𝛽𝑆𝑉𝐶
𝑎𝑏 = 𝑈1

𝑝ℎ𝑈1
𝑘 sin 𝛿1

𝑝ℎ − 𝛿1
𝑘 

𝜕𝐵𝑆𝑉𝐶
𝑝ℎ𝑘

𝜕𝛽𝑆𝑉𝐶
𝑎𝑏 ;(18) 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 6,  Issue 10 , October 2019 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                      11257 

 

 

𝜕𝑄1
𝑝ℎ

𝜕𝛽𝑆𝑉𝐶
𝑎𝑏 = −  𝑈1

𝑝ℎ 
2
− 𝑈1

𝑝ℎ𝑈1
𝑘 cos 𝛿1

𝑝ℎ − 𝛿1
𝑘  

𝜕𝐵𝑆𝑉𝐶
𝑝ℎ𝑘

𝜕𝛽𝑆𝑉𝐶
𝑎𝑏 ;(19) 

𝜕𝐵1
𝑝ℎ

𝜕𝛽𝑆𝑉𝐶
𝑎𝑏 = −

2

𝜋𝑋𝐿
 1 + cos 2𝛽𝑆𝑉𝐶

𝑝ℎ𝑘  .(20) 

The Jacobian elements corresponding to the partial derivatives of the values of active and reactive powers with 

respect to other phase angles of the nodal voltage are calculated similarly to (18) - (20). After solving the 

system of equations (16) and (17), a new set of state variables describing EPS and SVC is determined. 

SVC thyristor lead angles are updated using the expression: 

 

 𝛽𝑆𝑉𝐶
𝑝ℎ𝑘 

(𝑖)
=  𝛽𝑆𝑉𝐶

𝑝ℎ𝑘 
(𝑖−1)

+  ∆𝛽𝑆𝑉𝐶
𝑝ℎ𝑘 

(𝑖)
 

 
After the completion of the i-th iteration, the obtained solution is used to verify the convergence of the 

equations of three-phase unbalanced power. If the convergence criterion is not satisfied, a new iteration is 

performed. 

 

IV. CONCLUSION 

 

FACTS technology opens up new possibilities for managing power flows both in existing and in new or 

modernized power lines. These opportunities arise due to the ability of FACTS technology to manage 

interrelated parameters that determine the functioning of power lines, including reactance, current, voltage, 

phase angle between voltages, etc. 
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