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ABSTRACT: The article is devoted to the application of the spline wavelet transform to sequences of strongly 

correlated random variables. 

The data processing technique using spline wavelets allows weakening their correlation, which was shown in 

previously published works [1,2]. Also, studies were previously conducted that prove the effectiveness of applying a 

linear discrete wavelet transform (DWT) to sequences of random variables on real data in the framework of the 

problems of queuing theory. This article examines the question of the efficiency of using quadratic fast DWT based on 

splines, formulates the corresponding theorem and provides data from numerical experiments.  
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I. INTRODUCTION 

 

It is known that for a Gaussian random process, the best decorrelation method is the transition to the Karunen – Loev 

basis [3]. But the high computational complexity and the lack of fast conversion algorithms makes it difficult to use in 

time series processing tasks. Today, the use of discrete wavelet transforms (DVP) is widely studied in research centers 

around the world. From the entire spectrum of wavelet bases, in this paper we study spline bases of varying degrees, as 

potentially the most effective in the framework of the problem of weakening the correlation of the data sequence. 

 

II. SPLINE WAVELET FUNCTIONS 
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  The semi-orthogonal spline wavelets and the construction algorithm are described in )(
,

x
ni

  more detail in the works 

of I. Blatov. [four]. Figure 1 shows the graphs of the central spline wavelet functions for 3,2  mm  and 4m  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Spline wavelet functions - linear, quadratic and cubic (from left to right). 
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3. The concept of fast fiberboard based on splines The discrete wavelet transform is implemented by the Mall 

pyramidal algorithm [3]. Fast fiberboard is a linear transformation that processes a numerical vector of length N that is 

a multiple of some power of 2, converting it to another vector of the same length. A discrete wavelet transform is 

reversible and, in the general case, orthogonal. But for wavelet transforms in the class of finite orthogonal wavelets, 

there is no possibility of applying fast economical algorithms that exist for piecewise polynomial functions. And for 

piecewise polynomial functions there are no orthogonal systems with a finite number of supports. The use of finite 

semi-orthogonal spline wavelets makes it possible to avoid these shortcomings.  

3.1. Brief algorithm 

The direct conversion task is to find a set of coefficients  
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 The fast-fiberboard algorithm is described in more detail in the work of I. Blatov [4]. 

 

III. DECORRELATION PROPERTIES 

 

Let   k
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correlation matrix of a sequence of Y random variables has the form ,ˆ~ 11   KK  where is the Gram   matrix of 

the wavelet basis. Then the following theorem holds: 
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An estimate of the elements of the matrix K̂ follows from the theorem. It also follows from the above that the matrix

K̂  is pseudo rarefied, i.e. there is a sufficient number of small modulo elements. 
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IV. NUMERICAL EXPERIMENT ON DECORRELATION OF TIME SERIES 
 

To conduct a numerical experiment, sequences of random variables were obtained that characterize the signal in terms 

of the processing time of data packets in the system. A comparison of time series decorrelation methods was carried out 

as follows. Direct conversion was applied to the original data sequences. 

 From the obtained conversion coefficients, new sequences were compiled, and then the inverse 

transformation was performed. As a metric, the value of the sum of the modules of the correlation coefficients was used. 

The algorithm for calculating the correlation coefficients for time series is described in the work of I.V. Kartashevsky 

[5]. The results obtained at the end of experiments on five data sequences are presented in Table 1.  

Table 1. Comparison of experimental results with other types of transformations 

 

 

Conversion type  

 

1 2 3 4 5 

Source sample 

 

208,277  420,396  17,751  35,882  16,007  

 

Fourier Transform 

22,619  24,799  5,044  8,497  3,805  

Dobeshi Wavelet 

Transform 

 

22,490  18,204  5,455  7,351  5,532  

Spline-based 

fiberboard 

 (m=2)  

20,640  30,468  2,377  4,124  3,147  

Spline-based 

fiberboard 

 (m=3)  

18,707  30,811  2,110  4,009  3,025  

 

V. CONCLUSION 

 

 In conclusion, it must be said that the use of linear and quadratic spline wavelet functions for decorrelation 

of a sequence of strongly correlated random variables is potentially more effective than some of the orthogonal 

transformations studied in this paper. The prospect of using fiberboard based on splines is determined by its flexibility, 

good decorrelation properties and the existence of fast calculation algorithms. 
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