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ABSTRACT: The aim of present paper is to review some results on ring theory. Throughout this paper we discuss Ɍ is 

commutative ring with unity. Particularly, we discuss the basic definitions of Rings, Ideals, Integral Domains, Principal 

Integral Domain (PID), Unique Factorization Domain(UFD) and Euclidean Domain(ED).We have presented some 

important application on Principal Ideal Domain (PID),Unique Factorization Domain(UFD)  and Euclidean 

Domain(ED).  
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I.INTRODUCTION 

 

Covers some very basic concepts of Ring Theory over some fields like Integers, Rationals, Real numbers,Complex 

numbers etc. We begin with some basic definitions of Ring theory. As we study that Group theory stands only on the 

study of only one Binary operation, While Ring theory involves two Binary operations with additional elementry 

properties. There are many mathematical structures of study having two binary operations ,one is addition and the other 

is multiplication on ℤ, ℚ, Ɍ, ℂ, ℤ 𝑛ℤ, 𝑛 × 𝑛 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠  etc In Ring theory there is a very interested concept of      

“division”, ” division algorithm”,   ” prime “, ”factorization”  etc , from the ring of integers ℤ  to an arbitrary 

commutative integral domain Ɍ  with unity. Also we rephrase by definitions with innumerable examples ofIdeals, 

Divisors, Domains like Unique Factorization Domain,Principal Ideal Domain,Euclidean Domain along with their 

Applications including Euclidean Domain and the Gaussian Integers, Eisenstein integers, Polynomial rings, Smith 

Normal Form. 

II.LITERATURE SURVEY 

 

A) P.B.Bhattacharya, S.K. Jain, S.R.Nagpaul:- Outlined the expansion of ring theory with the concept of Ideals and 

homomorphism. In First edition he deals with rings and cover very basic concepts of rings, illustrated by numerous 

examples, including prime ideals, maximal ideals, UFD, PID and ED. Among these in second edition he represent the 

application division algorithm, Euclidean algorithm of Euclidean Domain(ED), Polynomial rings of Unique 

Factorization Domain(PID), Smith normal form of Principal ideal domain(PID). 

B) C Musili:- In Second Revised edition covering the very basic aspects of Rings, Ideals, Factorisation in 

Commutative Integral Domain. He also extended the concepts of Division, Division algorithm, Gaussian integers, 

Prime, Factorization ,Polynomial rings over PID etc from the ring of integers ℤ  to an arbitrary commutative integral 

domain Ɍ with unity.  

C) David Joyce:-Expressed the ring theory its properties, Integral Domains, the Gaussian integers, Divisibility in 

Integral Domain, Euclidean Algorithm, Division for Polynomial that is Division Algorithm and also give very 

important Unique Factorization theorem proving result of Unique factorization domain. 

D) Linda Gilbert/Jimmi Gilbert:-She has been writing text book since 1981 with her husband Jimmi Gilbert 

including „Elements of Modern Algebra‟ and „Linear Algebra and Matrix theory‟. As the earlier editions the author 

gradually introduce and develop concepts to help make the material more accessible. In 7
th

 edition developed the 

concept that how ring of integers working in Integral Domains, how a Field and Integral domain(finite /infinite) 

working together. 
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E) Joseph J. Rotman:-The first edition is printed in 2002 and second in 2003.He study advanced algebra and its 

related topics .Introduces prime and maximal ideals in commutative rings, UFD etc. 

F) E Weiss, MC Grawhill:-One can initiate the study of algebraic number theory either globally and locally i.e. either 

by considering ideals in the rings of integers of number fields or else by looking first at the behaviour of field 

extensions at a single prime divisor and investing relationship among different prime of same field and gives results on 

Minkowski  bound . 

III.RINGS 

 

A nonempty set Ɍ ≠ ∅  together with two binary operations „+‟,‟∙‟which  are called as addition and multiplication 

(product) respectively, then it becomes a ring Ɍ if its satisfies following properties: 

 (Ɍ, +) is an abelian group. 

 (Ɍ,∙) is a semi group  

 Distributive law hold for both left and right sides i.e. 

𝑝(𝑞 + 𝑟) = 𝑝. 𝑞 + 𝑝. 𝑟    𝑎𝑛𝑑       𝑝 + 𝑞 𝑟 = 𝑝. 𝑟 + 𝑞. 𝑟        ∀𝑝, 𝑞, 𝑟𝜖Ɍ 

A. Ring With Unity: A ring(Ɍ, +,∙) in which multiplicative semi group has an identity element   

i.e.1 ∈ Ɍsuch that  𝑝. 1 = 𝑝 = 1. 𝑝             ∀𝑝 ∈ Ɍ. 
B. Commutative ring: A ring (Ɍ, +,∙) in which multiplicative semi group satisfies commutative property 

i.e. 𝑝. 𝑞 = 𝑞. 𝑝         ∀𝑝, 𝑞 ∈ Ɍ. 
C. Examples(Trivial and Non trivial)  

 The rings   ℤ, ℚ, Ɍ, ℂ  are trivial examples of commutative ring with unity.  

 An example of a non-trivial commutative  ring in which every element is of square 0 (C Musili) 

different comparisons are:  

 An example:  𝑀2 ℤ 2ℤ   with usual addition but multiplication *defined as 𝑃 ∗ 𝑄 = 𝑃𝑄 + 𝑄𝑃  , but 

associativity of * is failure here. 

 If we tried ℤ 2ℤ × ℤ 2ℤ × ℤ 2ℤ   with point wise addition and multiplication in vector calculus. But this 

process is also not associative. 

IV. IDEAL 

 

Let Ɍ be a ring, Ҡ ⊂ Ɍ is a left ideal (right ideal) if it satisfies following two conditions: 

 𝑎, 𝑏 ∈ Ҡ → 𝑎 − 𝑏 ∈ Ҡ 

 𝑎 ∈ Ҡ 𝑎𝑛𝑑 𝑟 ∈ Ɍ → 𝑟𝑎 ∈ Ҡ  𝑎 ∈ Ҡ 𝑎𝑛𝑑 𝑟 ∈ Ɍ → 𝑎𝑟 ∈ Ҡ  

Here a Left Ideal or Right Ideal is a subring of(Ɍ, +, . ).  An Ideal is also called a two sided ideal if the subset  Ҡ of Ɍ is 

both of left and right ideal. 

A. Examples (Trivial and Non Trivial): 

  0  and Ɍ are the trivial examples of ideals of Ɍ 

 The sets Ԍ1 =   
𝑝 𝑞
0 0

 | 𝑝, 𝑞 ∈ Ɍ  and Ԍ2 =   
𝑝 0
𝑞 0

 | 𝑝, 𝑞 ∈ Ɍ   are respectively right and left ideals  of 

𝑀2 Ɍ  for any ring  Ɍ. 

As we know that proper means “𝑛𝑜𝑡 Ɍ“ and nonzero means “𝑛𝑜𝑡 0  and    nontrivial means "𝑛𝑜𝑡Ɍ  𝑎𝑛𝑑  𝑛𝑜𝑡 {0}“ 
If 𝜉: Ɍ → Տ is ring homomorphism then its kernal𝑘𝑒𝑟𝜉 =  𝑟 ∈ Ɍ: 𝜉 𝑟 = 0   is an ideal of Ɍ  and must be proper ideal 

of Ɍbecause if 𝑘𝑒𝑟𝜉 = 0then𝜉 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙𝑙𝑦 0.  
B. Prime Ideal:Let Ɍ be a commutative ring .An Ideal Ҡis said to be a Prime ideal of Ɍ if 

1.    Ҡ ≠ Ɍ   

2.     𝑝, 𝑞 ∈ Ɍ, 𝑝𝑞 ∈ Ҡ → 𝑒𝑖𝑡ℎ𝑒𝑟 𝑝 ∈ Ҡ 𝑜𝑟 𝑞 ∈ Ҡ 

C. Maximal left Ideals: Let Ɍ be a commutative ring then aleft ideal is called maximal ideal of Ɍ if   

1. Ҡ ≠ Ɍ  

2. For any ideal there is no Ideal strictly between Ҡ 𝑎𝑛𝑑  Ɍ  𝑖. 𝑒
 

If any ideal  ℒ   𝑜𝑓 Ɍ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 Ҡ ⊆ ℒ ⊆ Ɍ ⇒   𝑒𝑖𝑡ℎ𝑒𝑟 Ҡ = ℒ 𝑜𝑟  ℒ = Ɍ is hold 

D.Minimal left Ideal:Let Ɍ be a commutative ring then aleft ideal is called minimal ideal of  Ɍ if 

1. Ҡ ≠  0  

 2. For any ideal there is no ideal strictly between 0  𝑎𝑛𝑑 Ҡ i.e. 
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 0 ⊆ ℒ ⊆ Ҡ ⇒   𝑒𝑖𝑡ℎ𝑒𝑟 ℒ =  0  𝑜𝑟 Ҡ = 𝓛 

 

 

V. BASIC ALGEBRA OF THESE IDEALS 

 

A. Addition of Ideals:IfҠ 𝑎𝑛𝑑  ℒ   are ideals in ring Ɍ   ,then  

Ҡ + ℒ =  x + y  x ∈ Ҡ, y ∈ ℒ ⊆ Ɍ 
B. Multiplication of Ideals: 

IfҠ , ℒ  are two ideals of the ringɌ, we define multiplication of two subsets Ҡ, ℒ 𝑜𝑓 Ɍ as 

Ҡℒ =  x1y1 + x2y2 + ⋯ xnyn /xiϵҠˎyi ∈ ℒˎ1 ≤ i ≤ nˎn ∈ N i.e. finite sums of 𝑥. 
 

VI. UNITS AND ZERO DIVISORS 

 

A. Units:  Let Ɍ be a ring with unity .An element 𝑝 ∈ Ɍ is said to be a unit or invertible if ∃ 𝑞 ∈ Ɍ such that 𝑝𝑞 = 𝑞𝑝 =
1 the element 𝑞 is called the multiplicative inverse of 𝑝 and is denoted by 𝑝−1   . 

B. Examples:  The rings ℤ, ℚ, Ɍ, ℂ  are commutative ring with unity .Every non zero element of ℚ, Ɍ, ℂ  is invertible 

and the inverse of 𝑝 is 𝑝−1  . However the only units in   is   ±1.     

C. Zero Divisors: An element 𝑝 ∈ Ɍ is said to be a left zero divisor if  ∃𝑞 ≠ 0 suchthat 𝑝𝑞 = 0.Similarly 𝑝 is right zero 

divisor if  ∃ 𝑟 ≠ 0 suchthat𝑟𝑝 = 0. An element 𝑝 ∈ Ɍ is zero divisors, if it is both left and right zero divisor. 

D. Example based on Units and Zero divisors: 

 Find Zero divisors and Units of Ring   ℤ𝑛 × ℤ𝑚 . 

 The units of ℤ𝑛  and ℤ𝑚  are the different combinations of units of ℤ𝑛and units of ℤ𝑚  

 If we take ℤ6 × ℤ2 then units are different combinations of units of ℤ6 (units are 1 and 5) and units of ℤ2  (unit 

is 1). 

 In a finite commutative ring,a non zero element is either a unit or a zero divisors .If we find all elements of 

ℤ𝑛 × ℤ𝑚   and find all units , then the zero divisors are left i.e. not exist.   

VII. FIELDS 

A field is also a special type of ring .Let F be a ring with some additional properties is become to form a field. 

Conditions are: 

 F is commutative ring. 

 Identity element in F, i.e.  e ≠ 0 

 Multiplicative inverse exist for every non zero element 

The Rationals, Reals, and Complex form field and also if any ring corresponding to any prime ℤ𝑝  is a field.  

 

VIII. INTEGRAL DOMAIN 

 

Firstly we revise that there are many ID like every field is an Integral Domain that is  ℝi.e Real no‟s field ,Rings of 

Polynomials, The ring of Integers but the ring of integers which is IDgives very usable properties for Domains. First is 

Euclidean domain that is basis on Division Algorithm Second is Principal Ideal and third is Unique Factorisation. Also 

every ring has not all these properties after defining all these nice properties we revise a special relationship between 

them that is every ED⇒PID, every PID⇒UFD, every UFD⇒ID. 

i.e. IDs ⊃ UFDs ⊃ PIDs ⊃ EDs 

A. Definition of Integral Domain:A ring  Ɍ which is non zero is called an Integral Domain if there is no proper i.e. non 

trivial zero divisors in Ɍ. 

An integral domain satisfies three main conditions: 

 𝐼𝑓 𝑝2 = 0 ⇒ 𝑝 = 0 

 𝐼𝑓 𝑝𝑞 = 𝑝𝑟 ⇒ 𝑞 = 𝑟 

 𝐼𝑓 𝑝 ≠ 0 𝑎𝑛𝑑 𝑞 ≠ 0 ⇒ 𝑝𝑞 ≠ 0 𝑜𝑟 𝑝𝑞 = 0 𝑒𝑖𝑡ℎ𝑒𝑟 𝑝 = 0 𝑜𝑟 𝑞 = 0 
B.Examples (Trivial and Non Trivial respectively) 

a)ℤ, ℚ, Ɍ, ℂ, ℤ7, ℤ19  are the trivial examples of Integral Domain. 
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b) We review that, if we understand then the ring of holomorphic functions(central object in Complex Analysis) on a 

domain such anontrivial example. It is an 𝐼𝐷 because zeros of holomorphic function are isolated and It has more units 

than the 1-function because every constant function is invertible. 

C. Examples that not form ID: 

a)ℤ6 Was not form an𝐼𝐷 as let 2,6∈ ℤ6  and 2.6≡0(mod6) but neither 2≠ 0 nor 6≠ 0 

b)In   𝑀2 Ɍ  let  
𝑝 0
0 0

  𝑎𝑛𝑑  
0 0
0 𝑞

  ∀𝑝, 𝑞 ∈ Ɍ   and  

 
𝑝 0
0 0

 ×  
0 0
0 𝑞

 =  
0 0
0 0

  

but neither   
𝑝 0
0 0

 ≠ 0     𝑛𝑜𝑟      
0 0
0 𝑞

 ≠ 0 

so it does not form Integral  Domain. 

 

IX.PRIME AND IRREDUCIBLE ELEMENTS 

 

Let Ɍ  be a commutative Integral Domain with unity and  Ɍ∗ = Ɍ −  0  
A.Divisor: Let 𝑝, 𝑞 ∈ Ɍ  and 𝑞 ≠ 0 . Then 𝑝 divides 𝑞 or 𝑝  is divisor (or factor) of 𝑞and  we  are write it as  

𝑝 𝑞 ∃ 𝑑 ∈ 𝑅 𝑠. 𝑡.  𝑞 = 𝑝𝑑 

B. Associates: Two elements 𝑝, 𝑞 ∈ Ɍ∗ are called associates if ∃ 𝑝 𝑢𝑛𝑖𝑡 𝑣 ∈ Ɍ 𝑠. 𝑡.  𝑝 = 𝑞𝑣   𝑎𝑙𝑠𝑜 𝑞 = 𝑝𝑢  𝑤ℎ𝑒𝑟𝑒 𝑣−1 =

𝑢  𝑖. 𝑒.  𝑖𝑓  𝑝 𝑞  𝑎𝑛𝑑 𝑞 𝑝  

C. Irreducible element: Let  𝑝 be non zero element of Integral Domain Ɍ with unity is called an irreducible element if:
 

1.   𝑝 is non unit.           
 

2. If𝑝 = 𝑞𝑑 then either 𝑞 𝑜𝑟 𝑑   is must be unit i.e. in product both or atleast one is unit.  
 

D. Prime element: An element  0 ≠ Ɍ  of   𝐼𝐷 , Ɍ  is called prime if  

1.  𝑝 is non unit in  Ɍ           2.      𝑝 𝑙𝑚 ; 𝑙, 𝑚 ∈ Ɍ  𝑡ℎ𝑒𝑛 𝑒𝑖𝑡ℎ𝑒𝑟 𝑝 𝑙  𝑜𝑟 𝑝 𝑚  

E.Preposition:A prime is irrediucble element but not conversly. 

Let 𝑝  be a prime element in Ɍ. Take 𝑝 = 𝑙𝑚 .Then Obvious 𝑝 𝑙  𝑜𝑟 𝑝 𝑚 . Take 𝑝 𝑙  .Then 𝑙 = 𝑝𝑐   for some 𝑐 ∈ Ɍ  

.So 𝑝 = 𝑙𝑚 = 𝑝𝑐𝑚, hence 1 = 𝑐𝑚 (by cancellation law hold as its ring).Thus either 𝑐 𝑜𝑟 𝑚 is unit .Take a unit in 

Ɍ .Hence 𝑝 is irreducible element ,for the converse part we take an example ℤ 𝑖√3   with the elements of the form 

1 + 𝑖√3.  

X. EUCLIDEAN DOMAIN 

 

In First property of ID a Division Algorithm is the basis of Euclidean algorithm We revise ℤ  is ED  but some other ED  

are Gaussian integers ℤ 𝑖 ,the Eisentien integers ℤ 𝑤  where w  is primitive cube root of „1’and polynomial rings 𝑃 𝑥  
over P. The Division Algorithm starts with an integer which is Dividend(a) non zero integer divisor(b),the quotient (q) 

and the remainder(r) such that  

𝑎 = 𝑏𝑞 + 𝑟  𝑎𝑛𝑑 0 ≤ 𝑟 < 𝑏 
By this equation we find GCD(greatest common divisor) as well as find that GCD is linear combination of them. 

A. Definition of GCD: An element 𝜂 in a commutative ring is a greatest common divisor of elements 𝛿, 𝛾 ∈ Ɍ 

η is common divisor of𝛿, 𝛾 

If ρ is any  other common divisor of 𝛿, 𝛾 then 𝜌 𝜂.  

B. Definition of Euclidean Domain:A commutative Integral Domain with unity is called Euclidean Domains if there is 

a map defined by a function 𝜃:  Տ∗ → ℤ+ such that 

 For every   𝑎, 𝑏 ∈ Տ∗ = Տ −  0 , 𝜃 𝑎𝑏 ≥ 𝜃 𝑎  

 For every  𝑎 ∈ Տ∗ = Տ −  0 ⇒ 𝜃 𝑎 ≥ 0 

 For every 𝑎 ∈ Տ 𝑎𝑛𝑑 𝑏 ∈ Տ∗ 𝑎𝑛𝑑 𝑞, 𝑟 ∈ Տ  𝑠. 𝑡. 𝑎 = 𝑏𝑞 + 𝑟  𝑤𝑖𝑡ℎ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑟 = 0 𝑜𝑟 𝜃 𝑎 < 𝜃 𝑏  

The map 𝜃is called the algorithm map and the second property is called Division Algorithm. The elements   𝑎, 𝑏, 𝑞, 𝑟  

Dividend ,  divisor,  quotient and remainder respectively 

C. Examples of Euclidean Domain: 

 Any field F is ED. The algorithm map 𝜃:  𝐹∗ → ℤ+  i.e.𝜃 𝑥 = 1 ∀𝑥 ∈ 𝐹∗ 

 The ring of integers ℤ is Euclidean defined as𝑓 𝑛 =  𝑛 . 
 The ring of Gaussian integerℤ 𝑖  defined as𝑓 𝑎 + 𝑖𝑏 = 𝑎2 + 𝑏2. 
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D. The examples that not form ED 

 The ring of integers ofℚ √−19 , consisting of numbers of form    𝑎 + 𝑏√−19 2  where  𝑎, 𝑏 ∈ ℤ (both even 

or odd). 

 The ring Ɍ 𝑥𝑦  𝑥2 + 𝑦2 +  1   is not ED. 

 

 

XI. PRINCIPAL IDEAL DOMAIN 

 

Insecond property the ring of integers gives that every ideal in ℤ is generated by single elements i.e. all the non zero 

elements of ideal Ҡ is multiple of other element in Ҡ which is GCD. We revise every PID is UFD but converse is not 

possible i.e. ℤ 𝑥 (the ring of polynomial with integers coefficients)is UFD but generated by two elements 2 𝑎𝑛𝑑 𝑥 so 

not PID. 

A. Definition of PID:-A commutative Integral Domain (i.e. Ring with unity also) Ɍ is called  𝑃𝐼𝐷 if every element of Ɍ 

is principal i.e. generated by one element. 

B.Some Trivial and Non trivial examples are: 

 The ring2ℤ =  2  is PID  as its generated by single element 

 First of all we discuss the definition of Class group and Minkowski bound for Non Trivial example of PID. 

C. Class Group: Let  𝐼𝐹   the ring of integers of a number field 𝐹 . The class group𝐼𝐹  𝑜𝑓 𝐹  which is the group of 

fractional ideals modulo the subgroup of principal fractional ideals 𝑥  𝑓𝑜𝑟 𝑥 ∈ 𝐹. 
D. Finiteness of Class Group:Let 𝐹 be a number field .There is constant 𝒞𝑟,𝑠  that depends only on the number 𝑟, 𝑠 of 

real and pairs of complex conjugate embeddings of  𝐹 such that every ideal of class of 𝐼𝐹constants an integral ideal of 

norm at most   𝒞𝑟,𝑠√|𝑙𝘧 |,where 𝑙𝘧  =Disc(𝐼𝐹) .The class group  𝒞𝐹   𝑜𝑓  𝐹  is finite .One can choosesuch that every ideal 

class is   contains an integral ideal of norm at most√ 𝑙𝘧  
4

𝜋
 

𝑡!

𝑡 𝑡
The explicit bound  in the theorm is so called Minkowski  

bound. 

E.Non Trivial Example of PID: 

 Let here 𝐹 = ℚ 𝑖 .  𝑇ℎ𝑒𝑛 𝑡 = 2, 𝑠 = 1 and  𝑙𝘧 = 4so the Minkowski bound is   4  
4

𝜋
 

1 2!

22 =
4

𝜋
< 2 

Thus every fractional ideal is equivalent to an ideal of norm 1 since 1  isonly ideal of norm1 , every ideal is principal. 

So if ideal is principal so it is principal ideal domain. 

Now In generally, Ɍ −19 = ℤ 1 + √−19 /2 is an example of a PID with unity which is not Euclidean domain. 

But the interestedreader is referred to J.C.Wilson a PID that is not ED given a caution about this. 

Perhaps confusing  Ɍ −19  𝑤𝑖𝑡ℎ ℤ √−19  is taken PID but not ED.This is not correct since   ℤ √−19   is not PID 

because the ring ℤ 𝑖√3  is not UFD so not PID since the element 1 + 𝑖√3  is irreducible but not a prime 

In similar way    ℤ √−19   is not UFD   since   1 + 𝑖√19   is irreudicible but not a prime so not PID . 

 

XII.UNIQUE FACTORISATION DOMAIN 

 

The ring of integers hold this property which gives every integer can be written uniquely in product of primes but not 

all rings hold that every element in any ring can be factorise into particles and cannot claim for uniqueness. 

A. Definition of UFD: A commutative Integral Domain R with unity is said to be Unique Factorisation Domain if  

If every non zero non unit element can be expressed as finite products of irreducible factors.  

The factorization in irreducible elements is unique upto order and associates i.e. if 𝑧 ∈ Ɍ∗ = Ɍ −  0  is as 

𝑧 = 𝑟𝑥1𝑥2𝑥3 ⋯𝑥𝑖 = 𝑠𝑦1𝑦2𝑦3 ⋯𝑦𝑚  

Where 𝑟, 𝑠are units, all 𝑥 ′𝑠  𝑎𝑛𝑑  𝑦′𝑠 are irreducible .Then𝑖 = 𝑚 and each 𝑥′𝑠are associate to 𝑦 ′𝑠. 
B. Examples: 

 The ring of Integers ℤ 𝑖𝑠 𝑈𝐹𝐷. 

 Each commutative principal ideal ring with identity is also an Integral Domain is a 𝑈𝐹𝐷. 

 Consider ℂ (set of complex numbers), it‟s a field hence it is 𝑈𝐹𝐷. But if we consider a subring ℤ −5  then its 

not 𝑈𝐹𝐷 as 9 = 3.3and also9 =  2 + √5  2 − √5 . 

Hence the Factorization is not unique. 
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XIII. THEOREM:EVERY IRREDUCIBLE ELEMENT IS PRIME IN Ɍ. 

A.If Ɍ is PID. Let  𝑧 be an irreducible element in Ɍ and Ɍ is PID. We want to show that the element 𝑧 ∈ Ɍ is prime 

element in Ɍ. Consider𝑧 𝑝𝑞 ,  𝑝, 𝑞 ∈ Ɍ.  Assume∤ 𝑝 . Since Ɍ is PID,there exist 𝑑 ∈ Ɍ and  𝑧  𝑎𝑛𝑑   𝑝 are ideals of Ɍ 

i.e is generated by single element are 𝑧 𝑎𝑛𝑑 𝑝 respectively so by algebra of ideals  𝑧 +  𝑝 =  𝑑  as Ɍ is 𝑃𝐼𝐷 such 

that  𝑧Ɍ + 𝑝Ɍ = 𝑑Ɍ so 𝑧 +  𝑝 =  𝑑 ⇒  𝑧 ⊆  𝑑 ⇒ 𝑧 = 𝑐𝑑, 𝑐 ∈ Ɍ 𝑖. 𝑒. 𝑧 ∈ 𝑑Ɍ. 
As 𝑧 is irreducible so either 𝑐 𝑜𝑟 𝑑 must be unit .Suppose 𝑐 is unit. Then𝑧Ɍ = 𝑑Ɍ  ;so we have 𝑧Ɍ + 𝑝Ɍ = 𝑧Ɍ  .So, we 

get 𝑝 ∈ 𝑧𝑅  which gives 𝑧/𝑝 but this is contradiction to our supposition .Hence 𝑑  must be unit. Then 𝑑Ɍ = Ɍ , so 

𝑧Ɍ + 𝑝Ɍ = Ɍ then ∃ 𝑟, 𝑠 ∈ Ɍ  such that 𝑧𝑟 + 𝑝𝑠 = 1 .Thus we have 𝑧𝑞𝑟 + 𝑝𝑞s = 𝑞. Hence 𝑧 𝑞  because 𝑧 𝑝𝑞  .We 

getresult. 

B.If Ɍ is UFDLet𝑧 be an irreducible element in Ɍ and Ɍ is 𝑈𝐹𝐷.Let 𝑝, 𝑞 ∈ 𝑅∗ be such that 𝑧 𝑝𝑞.    We have to show 

that either 𝑧 𝑝  or𝑧 𝑞   Since 𝑧 𝑝𝑞 , ∃ 𝑑 ∈ 𝑅∗   such that 𝑧𝑑 = 𝑝𝑞. As Ɍ is  𝑈𝐹𝐷, There exist units 𝑟, 𝑠  and irreducibles 

𝑥𝑖 , 𝑦𝑗 : 1 ≤ 𝑖 ≤ 𝑙 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑚 , 𝑝 = 𝑟𝑥1𝑥2 ⋯𝑥𝑙  and 𝑞 = 𝑠𝑦1𝑦2 ⋯𝑦𝑚  now we have  

𝑧𝑑 = 𝑝𝑞 = 𝑟𝑠𝑥1𝑥2 ⋯𝑥𝑙𝑦1𝑦2 ⋯𝑦𝑚  

Since irreducibility occur in only one factorization .Hence 𝑧 is associate of some 

  𝑥𝑖 : 1 ≤ 𝑖 ≤ 𝑙 .Take 𝑧𝛼 = 𝑥𝑖   for some unit then get 

𝑝 = 𝑟𝑥1𝑥2 ⋯𝑥𝑙 = 𝑟𝑥1𝑥2 ⋯𝑥𝑖−1𝑧𝛼𝑟𝑖+1 ⋯𝑟𝑙  .Therefore we get 𝑝 𝑎    as we proved. 

XIV. THEOREM: AN EUCLIDEAN DOMAIN IS A PRINCIPAL IDEAL DOMAIN. 

Let Ҡ be a non zero ideal of an Euclidean domain Ɍ. If it has only the element which is  0 ,  then there‟s nothing to 

prove.  

In either way, if it has an element𝑘 ≠ 0 and because∀𝑘 ∈ Ҡ , 1/𝑘. Then 𝜃 𝑘 ≥ 𝜃 1 (by definition) .Then the set𝜃 𝑘  

is non empty set of integers .So by the principal of well ordering of integers there exist a element  𝑙 ∈ Ҡ such that 

𝜃 𝑙 is least in this set. 

We claim that   Ҡ =  𝑙  𝑖𝑓 𝑙 ∈ Ҡ,for proving the theorem. If𝑘 ∈ Ҡthen𝑘 = 𝑙𝑞 + 𝑟, for some 𝑞, 𝑟 ∈ Ҡ, with either 

 𝑟 = 0 𝑜𝑟 𝜃 r < 𝜃(𝑙). Since  𝑘 ∈ Ҡso is 𝑞𝑙 ∈ Ҡ  and 𝑘 ∈ Ҡ also holds. So, by the definition of an ideal, 𝑘 − 𝑙𝑞 = 𝑟 ∈

Ҡ .But we take choice of 𝜃 𝑙  is least , 𝜃 r < 𝜃 𝑙 is impossible.So,𝑟 = 0 𝑠𝑜 𝑘 = 𝑙𝑞 ⇒ such that k ∈  𝑙 .  𝑖. 𝑒.  Ҡ =
 𝑙 . Proved 

Note: Before proving the next theorem we will revise some lemmas that are based of next theorem. 

Lemma:Let ⅅbe a Domain in which every𝑑 ∈ 𝐷 , neither 0 nor a unit element is a product of irreducibles .Then D is 

UFD  if and only if  𝑥  is prime ideal in Dfor every irreducible element 𝑥 ∈ 𝐷3 

Lemma: If Cis a commutative ring and 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑛−1 ⊆ 𝐾𝑛 ⊆ 𝐾𝑛+1⋯ is an ascending chain of ideals in C, then 

𝐼 =  𝐾𝑛𝑛≥1  is an ideal in C(i.e. union of ideals is again an ideal in C) 

Lemma: If Ɍ is a PID,then it has no infinite strictly ascending chain of ideals.𝐾1 ⊊ 𝐾2 ⊊ 𝐾3 ⊊ ⋯𝐾𝑛−1 ⊊ 𝐾𝑛+1 ⊊ ⋯ 

Lemma: if Ɍ is a PID,every element 𝑟 ∈ Ɍ  is neither 0 nor a unit,then 𝑟 has a factorisation into irreducibles elements. 

XV.THEOREM: EVERY PID IS UFD. 

First we show that if Ɍ is a principal ideal ring then Ɍ cannot have any infinite properly ascending chain on ideals. 

Therefore, let 𝑥1Ɍ ⊂ 𝑥2Ɍ ⊂ 𝑥3Ɍ ⊂ ⋯ 

be chain of ideals in Ɍ.Let Ҡ =∪ 𝑥𝑖Ɍ 𝑎𝑛𝑑 𝑥, 𝑦 ∈ Ҡ, 𝑟 ∈ Ɍ .Then 𝑥 ∈ 𝑥𝑖Ɍ, 𝑦 ∈ 𝑥𝑗Ɍ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖, 𝑗.  Because either  

𝑥𝑖Ɍ ⊂ 𝑥𝑗Ɍ or 𝑥𝑗Ɍ ⊂ 𝑥𝑖Ɍ lie in one of the two ideals 𝑥𝑖Ɍ, 𝑥𝑗Ɍ, 𝑠𝑎𝑦 𝑖𝑛 𝑥𝑖Ɍ  Then 𝑥 − 𝑦 ∈ 𝑥𝑖Ɍ ⊂ Ҡ  𝐴𝑙𝑠𝑜 𝑎𝑟 ∈

𝑥𝑖ɌHence Ҡ is an ideal in Ɍ because Ɍ is a principal ideal ring Ҡ = 𝑥Ɍ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ Ҡ   

Now 𝑎 ∈ Ɍ → 𝑎 ∈ 𝑥𝑘Ɍ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘. 𝐹𝑢𝑟𝑡ℎ𝑒𝑟,   

Ҡ = 𝑥Ɍ ⊂ 𝑥𝑘Ɍ ⊂ Ҡ  Hint that  Ҡ = 𝑥Ɍ = 𝑥𝑘Ɍ; Hence  𝑥𝑘Ɍ = 𝑥𝑘+1Ɍ = ⋯ 

Next, we show that each element  𝑥 ∈ Ɍ is a finite product of irreducible elements. If 𝑥 is irreducible we are done. So 

let𝑥 = 𝑏𝑐, where neither 𝑏 𝑛𝑜𝑟 𝑐 Is a unit? If both 𝑏 𝑎𝑛𝑑 𝑐  are products of irreducible elements, we are done. So let 𝑏 

not be a product of irreducible elements, and write 𝑏 = 𝑟𝑠  𝑤ℎ𝑒𝑟𝑒  𝑟  say, is not a products irreducible element this 

process leads to a properly ascending chain of ideals 
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< 𝑥 >⊂< 𝑏 >⊂< 𝑟 >⊂ ⋯That will continue indefinitely if 𝑥 not a finite product of irreducible elements is. But since 

Ɍ cannot processes any infinite properly ascending chain of ideals we conclude that  𝑥  must be a finite product of 

irreducible elements. To complete the proof that Ɍis a UFD we need to show that if  𝑝/𝑥𝑦 where 𝑝  is an irreducible 

element in  Ɍ 𝑎𝑛𝑑 𝑥, 𝑦 ∈ Ɍ, 𝑝 𝑥 𝑜𝑟 𝑝 𝑦   which proves from the theorem that we are done previously that every 

irreducible element in PID is prime. Hence, the theorem is proved. 

 

XVI.THE EUCLIDEAN ALGORITHM IN EUCLIDEAN DOMAINS 

After proving that every𝐸𝐷 ⇒ 𝑃𝐼𝐷 and ⇒ 𝑈𝐹𝐷, therefore we find 𝐸𝐷 ⇒ 𝑈𝐹𝐷so we will revise at an example of 

Euclidean Algorithm in an ED other than ℤ . The Euclidean Algorithm works as the same manner as that in integers. 

We will find the greatest common divisor and then extend this Euclidean Algorithm will construct the greatest common 

divisor as a linear combination of given original two elements. 

To understand this there is an example from the polynomial ring 𝑄 𝑦  .Let us find greatest common divisor of any two 

polynomials𝑝1 𝑦 = 𝑦3 + 𝑦2 + 𝑦 + 1and 𝑝2 𝑦 = 𝑦3 − 𝑦2 + 𝑦 − 1.They have  same degree so one of these is become 

to be a divisor , firstly we divide 𝑝1 𝑦 by𝑝2 𝑦 ,we  can get the Quotient1 and Remainder𝑝3 𝑦 = 2𝑦2 + 2 and  then 

divide 𝑝2 𝑦   by  𝑝3 𝑦  and this process is repeated until the remainder will become 0 which we get after some 

iterations 

𝑝1 𝑦 = 𝑦3 + 𝑦2 + 𝑦 + 1                      𝑝1 𝑦 = 1. 𝑝2 𝑦 + 𝑝3 𝑦  

𝑝2 𝑦 = 𝑦3 − 𝑦2 + 𝑦 − 1                     𝑝2 𝑦 =  1
2 𝑦 𝑝3 𝑦 + 𝑝4 𝑦  

𝑝3 𝑦 = 2𝑦2 + 2                                     𝑝3 𝑦 = 2𝑝4 𝑦 + 0              
𝑝4 𝑦 = −𝑦2 − 1       

Thus we get remainder 0 and then we find the greatest common divisor which is 𝑝4 𝑦 = −𝑦2 − 1  after that we can 

read these equations on the right in reverse order to find   𝑝4as a linear combination of 𝑝1&𝑝2 . 

𝑝4 𝑦 = 𝑝2 𝑦 −  1
2 𝑦 𝑝3 𝑦   

𝑝4 𝑦 = 𝑝2 𝑦 −  1
2 𝑦  𝑝1 𝑦 − 1𝑝2 𝑦   

             = − 1
2 𝑦 𝑝1 𝑦 + 𝑝2 𝑦  1 − 1

2 𝑦       

XVII.APPLICATION OF ED 

A.Euclidean Domains and the Gaussian Integers: An Application 

Some very important fact uses in Euclidean domains, in this we have look about the ring of Gaussian integers. This 

ring, is denoted by ℤ 𝑖 , which is defined as the set of all complex numbers 𝑎 + 𝑖𝑏 where both 𝑎 𝑎𝑛𝑑 𝑏 are integers as 

the field used in this ring is set of Integers. But before seen that any ring is an Euclidean domain, we must have to first 

define a 𝑑−function for this, Define a value for 𝑑(𝑎) satisfying the required properties. For the ring 𝑍 𝑖 , we seen that 

Given any   z ≠ 0 in ℤ 𝑖  , we define 𝑑 𝑧 𝑡𝑜 𝑏𝑒 |𝑧|2 , where by |𝑧|, we mean the usual absolute value of the complex 

number 𝑧. So, if𝑎 + 𝑖𝑏 ∈ ℤ 𝑖  ,we define 𝑑 𝑎 + 𝑖𝑏 = 𝑎2 + 𝑏2. Clearly, for every non-zero element 𝑎 ofℤ 𝑖  , 𝑑(𝑎) 

will be a non-negative integer. 

We will find that this ring ℤ 𝑖   is of GAUSSIAN INTEGERS become to be an Euclidean. It is an Application. 

B.Euclidean Domain and the Eisenstein integers: An Application 

As above we revise the basis for Gaussian integers  is 1and 𝑖 as similar the basis for Eisenstein integers consist of 1and 

𝜔 where 𝜔 =
 −1+𝑖√3 

2
 is a primitive cube root of unity .The equation  𝑦2 + 𝑦 + 1 has three roots  1, 𝜔 𝑎𝑛𝑑 𝜔2 .The  

Eisenstein integers  is a triangular mesh which is 1 + 𝜔 +  𝜔2 = 0 .The six sixth roots of unity in Eisenstein integers 1 

itself, primitive sixth roots 𝜔 − 1, −𝜔 .the primitive cube root is 𝜔, primitive square root is -1. 

As like Gaussian integers the Eisenstein integers are Euclidean.It is an Application. 

XVIII.Application of UFD 

A. Application: Polynomial rings 
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The application of Unique Factorization Domain will be a polynomial rings in one variable with coefficients in any field 

(or division ring more generally). Let Ϳ be a Division ring and let Ɍ = Ϳ 𝑥  denote the polynomial ring with 

coefficients in Ϳ . We review that since Ϳ is in particular an Integral ring, then Ϳ 𝑥  is also an integral ring and there is a 

degree map 𝑑: Ɍ∗ → 𝙽 which satisfies 𝑑 𝑝𝑞 = 𝑑 𝑝 + 𝑑 𝑞 for 𝑝, 𝑞 ∈ Ɍ∗. Herethis degree map is additive. Notice that 

any additive degree map satisfies first condition of a Euclidean ring as  

𝑑 𝑝𝑞 = 𝑑 𝑝 + 𝑑 𝑞 ≤ 𝑚𝑖𝑛 𝑑 𝑝 , 𝑑 𝑞   𝑎𝑠 𝑑 𝑝 , 𝑑 𝑞 ∈ 𝙽 

XIX.Application of PID 

A. Application:Smith Normal form  

The Smith Normal form is a normal form of Matrix with entries from Principal Ideal Domain with unity P.Two𝑟 × 𝑠  

matrices   𝕄 𝑎𝑛𝑑 𝕃 over Principal ideal domain P are in Smith Normal form if ∃two invertible matrices 𝑄 ∈ 𝑃𝑟  and 

𝑅 ∈ 𝑃𝑠  will be 𝕃 = 𝑄𝕄𝑅  is equivalent to a matrix in Diagonal form. 

XX. CONCLUSION 

It is concluded that in Ring theory the Rings, Ideals and Domains are very useful concepts for defining ED, PID and 

UFD. What is the relation in between them which is very useful to study the concept of all these. Euclidean Domain 

generalizes the concept of Gaussiansintegers, Eisenstein Integers. The Smith Normal form defined over PID that are 

very useful to find rank of Matrix and lastly UFD defined by Polynomial rings in one variable.  
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