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ABSTRACT: In this article is given the work and, based on the refined theory of rods of V.K. Kabulov, systems of
differential equations of motion of thin-walled elastoplastic rods of arbitrary cross section under spatially variable
loading in current coordinates, taking into account damage accumulation, are presented and are presented in vector
form. To solve the boundary value problem, the finite difference method and the elastic solution method are used. As
an example, a diagram of the implementation of the calculation of the rods for the elastic case is shown.
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ILINTRODUCTION

The paper considers the equations of motion and difference schemes for calculating rods under cyclic loading
based on the theory of small elastoplastic deformations by A. A. llyushin [1] and the refined theory of rods proposed by
V. Z. Vlasov and V. K. Kabulov [2-3].

The questions of algorithmization and automation of solving problems of the theory of elasticity and plasticity
were first posed by V.K. Kabulov and developed by his students and followers. The works of T. Buriev developed
numerical methods for solving boundary value problems, examined computer implementation issues, and the
construction of an algorithmic system for calculating structural elements within and beyond elasticity under variable
loads and unloadings at current values, taking into account damage accumulation. T. Yuldashev developed ideas of
algorithmization of solving problems of mechanics of a deformable solid in some directions. In particular, the creation
of an algorithmic system for processing symbolic information in Deformed Solid Mechanics, algorithms for solving
problems of shell structures, mathematical models and an algorithm for calculating thin-walled structures taking into
account physical and geometric nonlinearity have been developed.

To study the effect of joint longitudinal, transverse and torsional forces on thin-walled structures of the type of
rods under spatially variable loading, the applied theory of rods is used. The development of modern theory of rods
gave impetus to the creation of V.Z. Vlasov of the theory of constrained torsion of thin-walled open-profile rods and
A.A. Umansky - closed-profile rods. As is known, under spatial loading, the distributions of displacements, strains, and
stresses in the cross sections of the rod are quite complex, therefore, the refined theory is based on a number of static
hypotheses [2-3].

ILSTATEMENT OF BOUNDARYVALUEPROBLEMS.

Consider a thin-walled rod of arbitrary section (rectangular, round, annular) when exposed to external variable
forces. The ox axis is directed along the length of the rod, and the and axes are directed along the cross section.
Following [4], we introduce the differences
07 = (" @ ~u), g = (" (e ~ef), (1)

(n) _( 1) (O.(n 1) _ (n)

Based on the assumptions and hypotheses [2, 3], we represent the general displacements of the structure in the
form (we omit the dash sign):
In Cartesian coordinates
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u”(x,y,z,t) =u —ya” —za{" + ou" + 3, 8" +a, 5",
u” (x,y,z,t) =v -z, @)
us” (x,y,z,t) = w® + yo®
In cylindrical coordinates( X = X, Yy =rcosy, Z=Trsiny):
u" 1y, ) =u® —a® reosy —al” rsiny +o(r, Y )v¥ +a,(r, ) B +a, (r, ) B,
ul” (x,r, 7, t) = v — 9(“) rsiny,

u{”(x,r, 7, ) =w™ + 0™ rcos y (3)
where 0[1( ) aé ) are the angles of rotation of the cross section under pure bending under n-th loading; (n) , 2(n)

- angles of transverse shear, 49( ) angle of torsion, Vl( ). linear twist under loading, - torsion function of Saint-

Venant. Here, the sought quantities U™, v®, W™ o™ &, 0™ vV, B™ | B are functions with respect to the

spatial variable x and time t.
According to (3), we determine the components of deformation under n-th loading:

(n) (n) (ﬂ) (n) (n) (n)
gfln’:%—rcos;/aa —rsiny +¢(r, ;/) +a1(r ) ﬂ +a,(r,y) 22— ﬂ
(n) (n)
gfy—a“’ +rcos;/—ag " +|siny %, 0376¢ v +|siny @, Osyaii (™
OX OX ar r oy ar r oy
. Oda, COSyoO
+] siny L2 227 % ),
or r oy
Ak dp siny o da, siny o
el = —rsiny — oy +| cosy— P TP, | cosy L 4 SNy oa (" 1
OX or r oy or r oy
+ cos;/aa?—s'lr]7/aa'2 (™ )
or r oy

To derive the equations of motion of the rods under spatial loading, taking into account elastoplastic
deformations, we use the Hamilton-Ostrogradsky variational principle [3]:

S[(T— 1T+ A)dt=0 5)
t
We calculate the kinetic energy variations, using the relation
au(n) au( )
5{Tdt= vdt. 6)
fra-ffo%; (0%

Performing mtegratlon operations in parts, we obtain:
3 (n)
s[Tdt=[pY" th u‘”)}dv‘ —”/’z [ u(”)} dvdt. (7)
t v =l t

Substituting expressions U; from (3) into the kinetic energy variations (7) and performing integration operations
over the sections of the rod, we have:
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5det jA—E5Y<">d | —j ®)

where Y :{ u™ v W o (”) aé"),ﬁ(") ("), 1("), z(n)} is the displacement vector, A is the matrix of the

ninth order, E is the identity matrix.
Variations of potential energy in this formulation have the form:
Q) oa'™ 61/1(”)

3 ou™ o .
S| Tdt = c"se™ |ldv=||{c™M5| ———rcos L _rsin 24 +
frioc=]{ Soroet g;{ 0{ 27 roos, 2 rin 2L 21

Q) ™ ) ™
al—agl - +a2—aa7- ]+o-1(3”)6[—8\g +rcos;/ag —a,+ [smyaq) cos;/a(pJ -
X X X X

or r oy
siny =1 o8 0057% ™ 4| siny oa, N cos y oa, o |,
or r 87 or r 87/
(n) (n)
+012")5{8V —rsinyag —a™ + [cos;/ago 5'”7’5_(Pjv(n)+
OxX OX or r oy
in in
+f cosy BT g [ o5, P ST O 1o \Lgvgt, ()
or r oy or r oy

According to the deformation theory of plasticity, the stress components are connec-ted through deformations
under alternating loading in the current coordinates [5]:

k-1
() _ (k) () ak) 0(k—m) =0(k-m)
o, =3G {e {a) e, +Za) & }

m=1
(k) (k) (k) =(k) S 0(k-m) =0(k-m)
bl m) —| m
O3 —G{em —W & —ZG) &3 }’
m=1
k k 0= ok o(k
0'1(2) —G{efz) — o )51(2) _zw ( _m)glz( _m)}- (10)
m—L
Here
=) ~ =(n)
0, mpu &"<¢g, (77)
™ _ —(0)
@ = £"(n) ~() o =(n)
A 1—_}(”) , IpHU g, > &, (77)

u

In the case of the generalized Masing principle ﬂn =A, Eu( = (,&; , When using the Gusenkov-

Schneiderovich strain diagrams Eu(") = 285, ﬂh =1- g, where g, is determined experimentally, and when damage
accumulation is taken into account

£M(n) = o) 1+ o )e, +(36) BV L 050+ )l ?Ja- @ -] (0 -

S
The damage function 77 is determined from the kinetic equation [4]:

—m\*
d_’]:A (O'u )

dn (1_7/77r)ﬁ’ )
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under the condition 1 (0) = 0, n (N) = 1, where N is the number of half-cycles before the onset of the limiting state
(destruction).

Now we transform the variations of potential energy. To do this, open the brackets and select the integral over
the cross section of the bar. After some calculations and notation from (9), we have:

5j mdt = [ {N"su® - M "o, =M P + Qo™ +QVsw™ +M M 5o +

t

(n) n
8Qy ovim +—6QZ( ) ow™ +
oX oX

y M , n MY M (oM Y
+(Q§)——ax jaafu[qp_—axy Sol + = M 5™ 4+ = QP 51" +

oM fgn) (n) (M 4 oM in) (n) (n)
+ 8—xl op; 6x2 of," ;dxdt (12)

The following notation is introduced here:

[rofldrdy =N, [rofdrdy=Q®, [r* cosyoldrdy =M,
F F

MO+ MDGB + M DB | dt‘ j | { su™ +

(r*cosyo ~rsinyoly) Jdrd y =M™, [r*sinyoildrdy =M,
F

rofdrdy =Q", [rpoldrdy =M, [raoldrdy =M, [ra,ofdrdy =ML,
F

F F

1

T —y
T

op op (n) op op 0 (n)
rsiny—+cosy— |0, +| rcosy—-siny— |o,,’ |drd
[ 78'_ 767} 13 ( Var 7/8}/ 12 V= Q

rsin y —-+cos o, rcosy —=—-sin oy, |drdy =Q%",
[ V or 7/87/} 13 V4 or 787/ 12 V

T ey
I

E

oa, oa ™ oa, 02, | _m ")
rsin y —% +cos lo7 rcosy —%—siny—= |’ |drd Q . 13
J‘K 4 or 4 ayj 13 ( 4 or 4 oy 12 y= (13)

Taking into account the introduced notation, expressions for internal efforts and moments, for example N « and

M , can be represented as:

a.
e

Zw

OX OX OX
(k)
_ ek avl aﬁl aﬂz
+(S¢ Sqﬂa) ) 6X +(Sa1 Salw) (Saz aza)) X
_F ou™” gk da,™ L5 e, _g® 6‘/1 ) _g) op Y _ aﬂz "
OX “ox Yo ox 70X A X ""2“’ OX
+k71 Fo(k—m) i(uo(k—m) _ uo(k—m—l) ) _ So(k—m) i(d o(k-m) a o(k-m-1) ) _
e @ 8X w 8X 1 1
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_So(km)g(azo(km) _azo(k—m—l))+s (k- m)%(vl (k-m) v, ofk-m- 1))+

Y ax oo
o(k—-m) m) m— o(k—m 0 m —m-1)
S0 " (ﬁlk R B VA e }}
(k) (k) ) U B oo, o) 0,
M 050) -2 (5, S22 1) P 1)
(k) (k) (k
et v et 9B ()95,
+(Iaz¢7 Iaz(/’) X +(Ia1a2 Ia1az) OX +(Iaz Iazﬂ)) X
o UMY e 00 o 00 g oY g a9 9B
22 ox 2y ox at OX 220X A% X 22 ox
k-1
ok-m) O ( o(k-m) _ o(k-m-1)) _yo(k-m) O [ o(k-m) _ _o(k-m-1)\
+m§;[saz O (e o) g em 8 (gt g okn)
Cyo(kem) O (okem) o(kem-1)) , qo(k-m) O [ ofk-m) _ o(k-m-1)
IalZ ax(az a, )+Ia2¢ aX(Vl v, )+
k) O [ pok-m)  po(k-m1)\ , (k) O [ p0(k-m)  oo(k-m-1) }
o (B =B ) (B - ) (14)
where
~=_[rdrd;/ =Jr cosydrdy, S =jrzsinydrdy S =Irgo(r y)drd ¥
) ) y ) ¢ )
F F

Iral(r,y)drdy, . :J'ra2 r,y)drdy, Jazy:jrzaz(l’,y)COS]/dl’dJ/,
F F

N =Ir a,(r,y)sinydrdy, J_, :Ir¢a2(r,;/)drdy, NI =Ira1a2drdy,
F F

F

=Ira§(r,y)drdy,
F

In a similar way, integrals Fw ey J aa; containing plasticity functions are defined, for example,

F, :Iwrdrdy,...., 32 :ja)a,j(r,y) rdrdy.
F

Substituting expressions of type (14) on the potential energy variations, we obtain:

w_ g\ OV n_ pur\yn . O (( pn_ g\ Y
5!Hdt=!{(Ay A )——+(B" - B )Y”}E&Y”dt|t+u{&((/ﬂ —A" )+

OX

) 8;)(( ) +(Dyn —Dn’7)Y(n)}E5Y(n)dth (15)

Variations in the work of external forces are taken in the form of:

SA= Izs: pMsuMdo+ I iqf“)é u™ds +I23: fMsuds,

v i=l s i=1l s i=1

+(Byn_Bm) (n)) (Cyn i

(16)

X

where ; is volume forces, {; is surface forces, fi is end forces.
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In the variation of the work of external forces (16), we substitute the expressions of displacements (3) and,
integrating over the cross sections of the rod, we have:

5[ Adt=[Q7dydt| + [ [Qdydxdt ()

Derivation of the equation of motion. Substituting vector expressions of the variation of kinetic (8), potential (15)
energies and work of external forces (17) into the variational principle (5) we obtain:

e e

(G C’“)a; (D" -D")Y +Q}E5Y dx dt +

oY ~dY
(A7 —am) (B -B" Y +Q7 (ESYdt| + [ASCESYdX| =0qs
" OX . ox at .

From this variational equation we obtain the following boundary-value problem for the kth loading in vector

form: equations of motion

Aaa% g{( A — A ) a;)((k) + ( B — g™k )Y(k)} + (Cyn _cm) ) 8;:) "

O(k-1 K—1
+(Dyn B Dm(k))Y(k) _QW+ aﬁ [ Anlh) 5Y6( : L Bk O(kl)] Lol aYa( ) N
X X X

OX

+ Cmm(k—m) i (Y O(k—m) _Y 0(k—m-1) ) + Dmm(k—m) (Y O(k—m) _ Y 0(k—m-1) )} : (19)
OX

border conditions

k 0(k-1
{( A Am(k))ﬁ\(;)(( : +<Byn B Bm(k))Y(k) _ G grelkly o) _ el ay "

na(k )y 0(k-1) & mo (k—m a 0(k—m) 0(k—m-1) nao(k—m) 0(k—m) 0(k—m-1)
+D +z )y —y )+8 (Yo -y ) |+

& OX

= nno(k-m) a 0(k—m) 0(k—m-1) nao(k-m) 0(k—m) 0(k-m-1) (k)
-S| A —(Y -y )+B (Y Y ) sYW =0 (20)
OX )
initial conditions
V0
AO|Y Eo Y(”)t:O (21)

Here the matrices A, B, C, D are quadratic matrices of the ninth order, Q" and er the vectors of external
forces of the ninth order and have the form:

_ n m(n) _ n mz(n) _ n m(n) _ n m(n)
(3 =q" —aj ,bij _bijy —bij . Gy =¢j" —¢i™", dij _dijy —dij )
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a; 0 0 a, as 0 a; ag ap by 0 0 by bs 0 by by by
0 ay 0 0 0 az 0 0 0 0 by, 0O 0 0 by 0O 0 0
0 0 a; 0 0 ag 0 0 O 0 0 by O O by 0O 0 O
ag 0 0 a, as 0 ay a5 2y by 0 0 by by 0 by by by
A=las; 0 0 a; as 0 ay asp as |, B=|by; 0 0 by by 0 by by by,
0 a, a; 0 0 a 0 0 0 0 by b 0 0 b 0 0 O
ap 0 0 a, ap 0 ay ay ap b,, 0 0 by by 0 by by by
8 0 0 ag ags 0 ay ag ag byy O O by by 0 by, by by
81 0 0 8y 85 0 & A A by O O by bys 0 by bgg by
¢y 0 0 ¢4 Cs5 0 ¢y Cg Cpy 0 00 O 0 0 O 0 0
0 Cp 0 0 0 cp Cy Cy Cy 0 0 0 dy 0 0 dy dy dy
0 0 c 0 0 g Cy Cy Cy 0 0 0 0 dg 0 dy dgg dg
Cip Cip O Cy Cys Cge Cyr Cyg Cyo 0 00 dy 0 0 dy dgg dy
C={Cy; 0 Cs3 C54 Cs5 Cs6 Cs; Csg Cso|y, D,=| 0 0 0 O dgg O dg; dgg dgg |,
0 Ce2 Ces Ces Ces Ces Ce7 Ces Coo 0 00 0 0 0 ds dgg dg
Cz1 Crp Cs3 Crs Css Cre Cy7 Crg Cpg 0 00 dyy dss O dyy dyg dpg
Cg1 Cg2 Cg3 Cgq Cgs Cgg Cg7 Cgg  Cgg 0 0 0 dg dgs O dg; dgg dgg
Cor Co2 Co3 Cos Cgs Cgs Cg7 Cog Cog 0 0 0 dg dgs 0 dg; dgg dgg
where
a, =F, 314:_Sz1315:_8y1ai728¢1a1 =Sa1,a19=S a,=F, ax= Sy au=F,
Q=55 8,=-S,, a=J,, 8g=J,,8,=-Jd,,, g="Jd,, g =-d,,; 8; =S,
a54:Jyz, =Jy 8y =J,,, 85="J,,,80="J,; 8, =— S a, =S,, 66:Jp,
=S, 8, ==y, 8, =—d,,,8, =, A=, =, 8;,=5,,8,="J, 85 ="J,,
as al(p’a88 J L 9g9 = Jalazlaglzsaz’a%:_ ya, ! a95:_‘]za2’ a97=‘]a2(/;’ a98:‘]a1a2’ a99=‘]a2

Similarly, matrix elements b d; and integrals Fa(,n),...,s)(,nw) containing plasticity functions @™ in

I] ’ Ij !
matrix coefficients are determined, for example:

F" = [o™dF,..12° = [0™a,edF

Expressions of internal efforts and moments in vector form can be represented as:

au(n)

P<">(x,t):—36|2°l°{(Ay" R Z— +(E§y”—§””‘”))u(")}- 22)

where
(n) _ (n) (n) (n) (n) (n) n (M (n) (n) n (M (n)
P (X’t)_{Nx ’My 1MZ iM¢ 1Mal ’Maza 1 1MX ’ Q aQ 1 }
Here ,&y", A0 , I§y", B "™ are twelfth-order square matrices and the elements are described as follows:

a'l alyn glO,s = bs,5; éll,s = bs,G; a~12,s = bs,4; 6|j = bij’
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~ ~

by, =d,¢; b, =d 4 b, =d, ,;(,j=12.95=789r=23456;).
I111.CONSTRACTING ADIFFERENCE SCHEME.
To solve the boundary value problem, the finite difference method and the method of elastic solutions by A.A.

Ilyushin are used.

Following [5], we write equations (19) in the following form:
2 _ —
AETW”+Q“A”—M“U6Y(+@W—BMQY“}%CW—@“)6Y(+@W—D“UYM=F“Q$
ot OX 0 0

where

— —(k) —w —-mo(k)
=Q +Q +Q ,
am(k) _0 NG 0 FOD | gD ) L s (1) O JOK | ) gk
OX OX oX

-1

—'mO Z{ |: m (ke—m) a (Y 0(k-m) _?O(k_m_l) ) + Bm(k’m) (Vo(k_m) _Vo(k_m_l) )j| n

OX

L Cmotkom) 0 («O(k m) _?0(k—m—1))+ Dotk (?O(k—m) _Vo(k—m—l))
194

The boundary conditions (20) can be rewritten in the following form

(k)

[( A — AM(k))aZ)((k) +(By" B"ﬂ("))?(k)] = I; (24)
I

&) = (k) (k) 5na0(k)
F =Q, +Q +Q
The notation introduced here

(k)

where

Q _Am g? +Bnﬂ(x)?0(k_l),
X
wo) tem) O [=0(k-m)  —0(k-m-1) ) [=0(k-m)  —0(k—m-1)
Q — Z Anm( 7m) a_(Y —Y )+ Bm‘lo( 7m) (Y —Y )
m-1 X
When constructing solutions to the system of differential equations (23) with boundary (25) and initial (21)
conditions, the centraldifference scheme of the second order of accuracy [6]:
oy 1 oY 1
EZZ_T(YLM _Yi,j—1)1 ?ZF(YL]H AR 1)
oy 1 oY 1
azﬁ(yﬂlyj_yi,“), Wzﬁ(vmj —2Y, +Yy;) (25)

wheret = jz, X=1ih

Using (25), we approximate the terms of the differential expressions of system (23). As a result, we obtain (at

w=0):
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Yi,j+1 = AY it BY +CYI+1] ,j _Yi,j—l; (26)
where
B C ~ 2A 2B ~ B C ~
A=72A1 . B=r’A" 4D |,C=r’At —+—=|, F.=72A'F .
(hz 2hj (r W J ’ (h 2hj WTER

We now approximate the boundary conditions (24); for this, we take the approximation with a step forward for i
= 0 and the approximation with a step back for i =N

i=0, ?)((zzlh(—svo‘j+4vl‘j—vzyj), @)
i=N, ?:(zzlh(st,j — &Y Y, (28)
Then from (24), taking into account (27) 1 =0 and (28) I = N, we have B
\ =5-1(25Y11 _thYZ' +C,Yy; — P;';j 5:2—i+6, (29)
Yy = Dl( th Yoo, + ZEhYNZJ +C,Y0, - P, j D= —g +C. @

When 1 =1, it follows from (26) that
Y, ;u =AY, +BY, +CY, , +F Y,

1,j—1;
from here, taking |nt0 account (29), after reducing such terms we obtam

Y= ~BY,. +CY - F =Y, s (31)
where
= -~ 2B =~ = ~_.,2B =~ = ~
B= AD‘lT+ B, C :—AD‘lT+C, F,. =-AD'P* +F
For I =N —1 from (26) we have
Ya1jn= AYN Y +BYN oy +CY +FN PR (RS (32)
We substitute (30) into (32), after the reduction of such terms we have
YN—l,j+l = AYN—Z,j + BlYN—l,j + FN—l,j _YN—l,j—l; (33)

where, ,Z\ = /—5\+6|5_1%, §1 = 5_56—1%’ |EN_1J = _65_1P[\T!,)j + IEN_LJ‘ :

In equations (31), (26) and (33), respectively, the functions Yl j-10 Yi’ jo1r

functions at t = 0 or j = 0 are not yet known. They are determined from the initial conditions (21).
From the initial conditions (21) we have

oY
AE YI o Y YI 01 (34)

t=0 t=0

YN—l,j—l' are participated. These

sincet = O corresponds to j =0, hence
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A .
_(Yi,j+1 _Yi,j—l):YifJO’ Yio :Yi,oo , (35)
2T
for ] =0 from relation (35) we have
Y =Y, 27 A Y.i,OO’Yi,O =Yi’00. (36)

The functions Y1,1 from (31), Yiy j from (26), YHY j from (33) after using relation (36) are expressed in terms of
the initial conditions.
From (31) with 1 =1, ] =0 we have

Y1,1 = éYl?O + C:Yz(,)o + I’:Nvl,o _Yl,—l'
Hence, given (36)
1/= = . 2
Y, = E( BYS +CY2, —2r ATV +F,, ) , (37)
ati =1, j =0 from (26)

Yi,l = AYi—1,0 + BYi,o +éYi+1,o + Fi,O =Y,

i-1"

In view of (34) - (36)
Y, = %(AYi_l,o +BY, g +CY,pp)+7 AT, (38)
From (33) with 1 = N —1, j =0, taking into account (36), we have
Yo, = %(EYS_Z,O FBY,,+ ) v ATV, (39)

As a result, we obtain the following system of finite difference equations:
withi =1, j =0 we have;
Y, = %( BY., +CY., +F,—2r ATV ) ,
with i=1 j=0;
Y. = %(AYHO +BY, , +CY,, o + 'Ei,0)+ T ATYS,
withi=N -1, j=0;

YN—l,l = %('E‘Yr\?zo + éYl\?—l,O + |§N1,o)+ r A7 Yl\?—i,O )

with1=1, j=1;

Y,, =BY, +CY,, +F,-Y2 ,

with =1, j=1;

Y., =AY +BY, +F,-YC, (40)

withi=N -1, j=1;
YN -1,2 = AYN -21 + BYN -11 + C~YN 1 + ~N -11 _Yl\(l)fl,O '
with 1 =1, j>2;
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nﬁi=§nJ+énJ+€J—nkp
with 1 =1, ]>2;
Yi,j+1

with i =N-1]>2;

=AY, +BY,, +CY,, +F

i+1, i

Y.

i,j-1

YN—l,j+1 = AYN—Z,] + éYN—l,j + IfN—l,j _YN—l,j—l'

Thus, the Cauchy problem was formed in the form of algebraic equations (40). Here, the inner loop is parameter
i, and the outer loop is parameter j.

As an example, we consider the elastic-plastic calculation of thin-walled rods based on a generalized diagram of
cyclic deformation under repeated static loading [4]. Calculation of rods of rectangular cross section, pinched at the

ends with the following initial data: geometric and mechanical characteristics of the rod: | = 2,5; h =0,Lu;
b, =0lu; E= 2*10° M £,=0.0015
uniformly ~distributed external loads: f; =25 ; f, =50 ; f =10 ; f, =5 (xelcM®) ;
_ T T T T
L R N (S k+1 q -
y=—a=—y*=—a*=—;0" =5(-)"" (5§ =11.5;2).
4 3 6 2
Table 1 shows the numerical values of the calculated quantities\W ), al(k), fk) along the length of the rod
under cyclic loading (k =1,2,5,6).
Table 1
X k=1 k=2 k=5 k=6
0,1 -0,038498 0,038514 -0,038502 0,038515
0,2 -0,124965 0,125019 -0,124982 0,125024
W & 0,4 -0,284147 0,284276 -0,284190 0,284286
0,6 -0,284124 0,284251 -0,284166 0,284262
0,8 -0,124919 0,124971 -0,124934 0,124976
0,9 -0,038463 0,038478 -0,038467 0,038480
0,1 -0,724490 0,724800 -0,724583 0,724827
0,2 -0,965903 0,966339 -0,966050 0,966376
a 1(k) 0,4 -0,482706 0,482927 -0,482782 0,482945
0,6 0,483426 -0,483655 0,483511 -0,483673
0,8 0,966394 -0,966825 0,966536 -0,966861
0,9 0,724772 -0,725073 0,724856 -0,725100
0,1 -0,021403 0,021411 -0,021405 0,021412
0,2 -0,016126 0,016134 -0,016129 0,016135
1<k) 0,4 -0,005407 0,005411 -0,005409 0,005411
0,6 0,005309 -0,005312 0,005311 -0,005313
0,8 0,016028 -0,016036 0,016031 -0,016037
0,9 0,021306 -0,021314 0,021307 -0,021314
Changes in the components of displacements along the length of the bar are shown in Figure 1.
Figure 1.
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0,7
—e] —ed — -3 alfal-1 alfal-2 alfal-3
Figure 2 shows the change in the ductility zone with respect to loading cycles at k = 2,3,4,5,6 .
Figure 2.
k=2 k=3 k=4 k=5 k=6

=002 mozo04 W04-06 WO06-0.E mggg

IV.CONCLUSION AND FUTURE WORK

Findings. Based on the Hamilton-Ostrogradsky variational principle and refined theory of rods, systems of
differential equations of motion of thin-walled elastoplastic rods of arbitrary cross section under spatially variable
loading in current coordinates are derived.

To solve the boundary value problem, the finite difference method and the elastic solution method are used. As
an illustration, a diagram of the implementation of the calculation of the rods under re-static loading is shown.
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