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ABSTRACT: In this paper we will study a class ,Which is composed of analytic and 

univalent functions with negative coefficients  in the open unit disk U={z∈C:|z|<1}defined by Hadamard product (or 

convolution) with AMEEN - Operator, we obtain coefficient bounds and extreme points for this class. Also distortion 

theorem using fractional calculus techniques and some results for this classare obtained. 
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     I.INTRODUCTION 

 

The integral AMEEN-operator of  ∈   for          is denoted by  

 
 and defined as following: 

      
      

    
       

 

 
 
        

 
  

 

 

                                   (1) 

The operator is known as the Komatuoperator[2].A function  ∈   ,  is said to be in the class 

 if and only if it satisfies the inequality 

(2) 

 
For some C and      for all  . 

The class                was introduced b Altintas[1] who obtained several results concerning this class .The class 

             was introduced by Srivastava and Owa[3]. 

The class              was introduced by Atshan and Kulkarni[1]. 
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Definition (1):We say that the function   of complex variable is analytic in a domain D if is differentiable at every 

point in that domain D. 

Definition (2): A function   analytic in a domain D is said to be univalent there if it does not take the same value twice 

that is             for all pairs of distinct points    and    in D.  

Definition (3): A function  ∈   is said to be convex function of order   if and only if  

 

We denote the class of all convex functions of order   in   by    . 

Note that           ,       and        , and the Koebe function is starlike but not convex, where the Koebe 

function given by 

     
 

      
     

 

   

 

is the most famous function in the class   , which maps   onto C minus a slit along  the negative real axis from  
 

 
 to 

   

 

 

Theorem (1): Let  ∈   .Then   is in the class              if and only if 

   (.3) 

The result (3) is sharp. 

Proof: Assume that   .Then, we find from (.2) that 

 

.  

If we choose  to be the real and let ,  

                   
    

   

   
           we get 

             

 

   

 
   

   
            

 

Which is equivalent to (3).conversely, assume that (3) is true. Then, we have 
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. 

The implies that . The result (3) is sharp for the function 

                      (4) 

In the following theorem, we obtain interesting properties of the class  . 

 

Theorem (2):Let .Then 

                   (5) 

 

Proof:Easy to see it;for  , 

.  

Hence  

 

Now, 
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, 

and 

 

.  

Theorem(3): Let  

be in the class .Then the function 

             

 

   

         

 

   

 

is in the class . 

Proof: By definition of     , we have 

 

Thus, we have from Theorem(.1) 

 

 

Which completes the proof of Theorem(.3) 
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