

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 7, July 2019

About Some Results Related to Minimal Pre-connected Space , Maximal Preconnected Space

Raad Aziz Hussain AL-AbdulaaAtheerAbd-ALHadi

Dept. Of Mathematics, College of Computer Science and Information Technology. University of AL – Qadisiyah –Diwanyah -Iraq

ABSTRACT : In this paper , we introduce a new spaces are said to be minimal pre- connected space and Maximal preconnected space by using the set pre- open , where we studied identified its properties and we can define the sets maximal pre- open (reps. minimal pre- open) sets .We find the relation between them and with set Pre- open (resp. maximal open , minimal open) sets . Where every maximal pre- open (resp. minimal pre - open) sets is pre- open , but the converse is not true in general and every maximal pre- open (resp. minimal pre- open) sets is maximal open (resp. minimal open) sets , but the converse is not true in general . Also , we can define the spaces minimal pre- connected (resp. Maximal Pre- connected) spaces and we find the relation between them and with the spaces connected (resp. pre- connected , minimal connected , maximal connected) space .Where every connected space is minimal preconnected (resp. maximal pre- connected) space also every connected space is minimal connected (resp. maximal connected) space , but the converse of them is not true in general .But we find every pre- connected is connected space .But not conversely also every pre - connected space is minimal connected (resp. maximal - connected) space .But not conversely in general also we find every minimal connected (resp. maximal - connected) space .But not conversely in general also we find every minimal connected (resp. maximal connected) space is minimal pre- connected) space is minimal connected (resp. maximal - connected) space is minimal pre- connected (resp. maximal pre - connected) space is minimal connected (resp. maximal - connected) space is minimal pre- connected (resp. maximal connected) space is minimal pre- connected (resp. maximal pre - connected) space is minimal connected (resp. maximal connected) space is minimal pre- connected (resp. maximal pre - connected) space is minimal connected (resp. maximal connected) space is minimal pre- connected (resp. maximal pre -

KEYWORDS: Minimal pre-connected space, Maximal pre-connected space, Minimal connected space, Maximal connected space, connected space, pre-connected space.

Mathematics subject classification: 54 XX

I. INTRODUCTION

In [1] introduced set of class pre-open byNavalgi , G , B . In [2] Gemignani , M.C. The definition was introduced that connected space and gave relation about the connected space . In [3] AL-Maleki , N.J. The definition was introduced that pre-connected and proved that every pre-connected space is aconnected spaceand the converse is not true in general . In [4] F.Nakaoka and N. oda . gave some application of minimal open sets . In [5] F. Nakaoka and N. Oda , introducedsome application of Maximal open sets . In [6] K. FadhilRadhi introduced anew calssB*c-open set and proved some application about that . In [7] Reszard Engel- king introduced properties about open and closed sets also in [8] Relly , I and Gansrter , M. , showed the relation between open sets and Pre- open sets , where proved every open set is a Pre- open set , but the converse is not true in general . In [9] A. S. Mashhour , M. E. Abd- El- Monsef and S. N. ElDeeb , showed that properties Pre-open sets and Pre- closed sets , where he proved A is a Pre- open set if and only if A^c is a Pre- closed set .

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 7 , July 2019

II. MAIN RESULTS

Definition (1.1): [1] A subset A of a topological space (X, τ) is called a pre-open set if $A \subseteq \overline{A}$. The complement of pre-open set is called a pre-closed set. The set A is named pre-clopen if it is pre-open and preclosed. The set of all pre-open subsets of X is limited by po(x). The set of all pre-closed subset of X is limited by pc(X).

Definition (1.2): Let X be a space of topology. A proper nonempty pre-open subset U of X is called to be : i) A pre-open of minimal set if any pre-open sets that is included in U is ϕ or U. ii) A pre-open of Maximal set if any pre-open sets that contains U is X or U.

Definition (1.3): [2] A space of topology (X, τ) is called to be disconnected space if X may be expressed as the union of two disjoint open nonempty sub set of X otherwise, X is said to be connected space.

Definition (1.4): Let X be a topological space. A proper nonempty open subset U of X is said to be : i) A minimal open set [4] if any open set which is contained in U is \emptyset or U.

ii) A maximal open set [5] if any open set which is contains U is X or U.

Definition (1.5): A space of topology (X , τ) is called :

i) Minimal connected space if X is not a union of two nonempty disjoint minimal open sets .

ii) Maximal connected space if X is not a union of two nonempty disjoint Maximal open sets .

Definition (1.6): [3] A space of topology (X, τ) is called pre-connected space if X is not a union of two nonempty disjoint pre-open set.

 $\begin{array}{l} \textbf{Definition (1.7):} A \text{ space of topology (X, \tau) is called :} \\ \textbf{i)} \text{ Minimal pre-connected space if } X \text{ is not a union of } two nonempty disjoint Minimal pre-open set .} \\ \textbf{ii} \text{)} \text{ Maximal pre-connected space if } X \text{ is not a union of two nonempty disjoint Maximal pre-open set .} \end{array}$

Remark (1.8): Let X be A space of topology and $A \subseteq X$. then : **i**) A is an open if and only if A^{C} is a closed [7] **ii**) A is a maximal open if and only if A^{C} is a minimal closed [4] **iii**) A is a pre-open if and only if A^{C} is pre-closed [9]

Lemma (1.9): Let X be A space of topology and $A \subseteq X$. then : A is a pre-open of Maximal if and only if A^{C} is pre-closed set of minimal.

Proof: Let A be a pre-open of maximal . Then A is a pre-open , then A^C is a pre-closed . Let V be pre-closed such that $V \subseteq A^C$, then $A \subseteq V^C$. Since A is a Maximal pre-open , then $V^C = A$ or $V^C = X$, then $V = A^C$ or $V = \phi$, hence A^C is a minimal pre-closed

Conversely Let A^C be a minimal pre-closed, then A^C is a pre-closed, then A is a pre-open. Let W be is a pre-open such that $A \subseteq W$, then $W^C \subseteq A^C$. Since A^C minimal pre-closed, then $W^C = A^C$ or $W^C = \phi$, then W = A or W = X. hence A is a Maximal pre-open.

Remark (1.10):i) Every minimal open (resp. maximal open) is open. [6]
ii) Every minimal pre- open (resp. maximal pre- open) is Pre-open.
iii) Every minimal closed (resp. maximal closed) is closed.
The converse of above remark is generally not right.

Example (1.11): Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}\}$ Po(x) = $\{X, \phi, \{1\}, \{3\}, \{1, 2\}, \{2, 3\}\}$ i) A = $\{1\}$ is an open set, but not maximal open and B = $\{1, 2\}$ is open set, but not minimal open.

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 7, July 2019

ii) $A = \{1\}$ is a pre-open set, but not maximal pre- open and $B = \{1, 2\}$ is a pre-open set, but not minimal pre- open. **iii**) $A = \{3\}$ is closed set, but not maximal closed and $B = \{1, 3\}$ is closed, yet not minimal closed.

Theorem (1.12): Every connected space is minimal connected space.

Proof: Let (X, τ) be a connected space yet it is not minimal connected space so $X = A \cup B$ such that $A \neq \phi$, $B \neq \phi$, $A \cap B = \phi$ and A, B minimal open sets then by remark (1.10)(i) we get A and B are open, therefore X is not connected space, that is a contradiction. Then X is minimal connected space.

Remark (1.13): The theorem converse (1.12) is generally not right.

Example (1.14): Let X = { 1, 2, 3 }, $\tau = \{ X, \phi, \{ 1 \}, \{ 2 \}, \{ 1, 2 \}, \{ 2, 3 \} \}$ minimal open = { { 1 }, { 2 }}. It is clear that X is a minimal connected space yet it is not connected space because X = { 1 } U { 2, 3 }.

Theorem (1.15): Every connected space is maximal connected space.

Proof : Let (X, τ) be a connected space yet it is not maximal connected space so $X = A \cup B$ such that $A \neq \phi$, $B \neq \phi$, $A \cap B = \phi$ and A, B maximal open sets then by remark (1.10)(i) we get A and B are open, therefore X is not connected space that is a contradiction. Then X is maximal connected space. The Theorem converse (1.15) is generally not right.

Example (1.16):Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}\}$, maximal open = $\{\{1, 2\}, \{2, 3\}\}$ It is clear that X is a maximal connected space but it is not connected space .because $X = \{1\} \cup \{2, 3\}$

Theorem (1.17): Every pre-connected is minimal pre -connected space.

Proof : Let (X, τ) be a pre-connected space yet it is not minimal pre- connected space so $X = A \cup B$ as $A \neq \phi$, $B \neq \phi$, $A \cap B = \phi$ and A, B minimal pre-open sets then by remark (1.10) (ii) we get A and B are pre-open. Therefore X is not pre-connected space.

Remake (1.18): Then converse of Theorem (1.17) is generally not right.

Example (1.19):Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1, 2\}\}, Po(x) = \{X, \phi, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$ minimal pre-open = $\{\{1\}, \{2\}\}$.It is clear that X is a minimal pre- connected space yet it is not pre-connected space because $X = \{2\} \cup \{1, 3\}$.

Theorem (1.20): Every pre-connected is maximal pre- connected space.

Proof :Let (X, τ) be a pre-connected space but it is not maximal pre- connected space so $X = A \cup B$ as $A \neq \phi$, $B \neq \phi$, $A \cap B = \phi$ and A, B maximal pre-open sets then by remark (1.10) (ii) we get A and B are pre-open. Therefore, X is not pre-connected space. That is a contradiction. Then X is maximal pre-connected space.

Remark (1.21): The Theorem converse (1.20) is generally not right

Example (1.22): Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1, 2\}\}, Po(x) = \{X, \phi, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$ maximal pre-open = $\{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$. It is clear that X is a maximal pre-connected space yet it is not preconnected space. because $X = \{2\} \cup \{1, 3\}$.

Remark (1.23): [3] Every Pre-connected space is a connected space [3]. But the converse is generally not right.

Example (1.24): Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1, 2\}\}, Po(x) = \{X, \phi, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$ We sum up X is connected space but it is not pre-connected space because $X = \{2\} \cup \{1, 3\}$.

International Journal of Advanced Research in Science, Engineering and Technology

ISSN: 2350-0328

Vol. 6, Issue 7, July 2019

Theorem (1.25): Every pre-connected space is minimal connected space.

Proof : By Remark (1.23) and by Theorem (1.12)

Remark (1.26): The Theorem converse (1.25) is generally not right.

Example (1.27) Let X = { 1, 2, :3 }, $\tau = \{X, \phi, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}\}$

minimalopen = {{ 1 }, { 2 }}, Po(x) = {X, ϕ , { 1 }, { 3 }, { 1, 2 }, { 2, 3 }}. It is clear that X is a minimal connected space yet it is not pre-connected space . because X = { 1 } \cup { 2, 3 }

Theorem (1.28): Every pre-connected space is maximal connected space.

Proof : By Theorem (1.23) and by Theorem (1.15)

Remark (1.29): The Theorem converse (1.28) is generally not right.

Example (1.30): Let X = {1,2,3}, $\tau = \{X, \phi, \{1\}, \{2\}, \{1,2\}, \{2,3\}\}$, maximal open = {1,2}, {2,3} pre-open = {X, ϕ , {1}, {2}, {1,2}, {2,3}}. It is clear that X is a maximal connected space yet it is not pre-connected space because X = {1} U {2,3}.

Theorem (1.31): Every open set is a pre – open set, [8].

Theorem (1.32): A space of topology X and $A \subseteq X$. Then : i) If A is a minimal pre- open, then A is a minimal open. ii) If A is a maximal pre- open, then A is a maximal open.

Proof :(i) Let A be minimal pre-open and suppose that A not minimal open, then there exists open set U in X as U \subseteq A and U $\neq \phi$, U \neq A, then there exists pre-open set U in X as U \subseteq A and U $\neq \phi$, U \neq A, then A not minimal pre-open which is contradiction. Therefore A is a minimal open in X.

(ii) Let A be maximal pre -open and suppose that A not maximal open, then there exists open set U in X. As $A \subseteq U$ and $U \neq X$. $U \neq A$, then there exists Pre-open set U in X such that $A \subseteq U$ and $U \neq X$, $U \neq A$, then A not maximal pre-open which is contradiction. Hence A is a maximal open in X.

Theorem (1.33): A space of topology X. And $A \subseteq X$. Then: i) If A is aminimal pre-open (resp. maximal pre-open), then A isanopen. ii) If A is aminimal pre-closed (resp. maximal pre-closed), then A is a closed.

Proof :(i) Follows from the (1.32) (i), (ii) and Remark (1.10), (iii) This diagram showing the relationships among kinds of minimal open (resp. maximal open)

International Journal of Advanced Research in Science, Engineering and Technology

ISSN: 2350-0328

Vol. 6, Issue 7, July 2019

Theorem (1.34): Every connected space is maximal pre-connected space

Proof : Let (X, τ) be a connected space yet it is not maximal pre-connected space so $X = A \cup B$ as $A \neq \phi$, $B \neq \phi$, $A \cap B = \phi$ and A, B maximal pre-open set then by Theorem (1.33)(i) we get A and B are open, therefore X is not connected space, that is a contradiction. Then X is maximal pre-connected space.

Remark (1.35): The Theorem converse (1.34) is generally not right.

Example (1.36): Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}, \{2, 3\}\}, Po(x) = \{X, \phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$ maximal pre-open = $\{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$. It is clear that X is maximal pre-connected space but it is not connected space because $X = \{1\} \cup \{2, 3\}$.

Theorem (1.37): Every connected space is a minimal pre-connected space.

Proof :Let (X, τ) be a connected space yet it is not minimal pre-connected space so $X = A \cup B$ as $A \neq \phi$, $B \neq \phi$, $A \cap B = \phi$ and A, B minimal pre-open set then by Theorem (1.33)(i) we get A and B are open, therefore X is not connected space, that is a contradiction. Then X is minimal pre-connected space.

Remark (1.38): The theorem converse (1.37) is generally not right.

Example (1.39): Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}, \{2, 3\}\}, Po(x) = \{X, \phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}, minimal pre-open = \{\{1\}, \{2\}, \{3\}\}. We sum up X is minimal pre-connected space but it is not connected space because <math>X = \{1\} \cup \{2, 3\}$

Theorem (1.40): Every minimal connected space is minimal pre-connected space.

Proof : Let (X, τ) be a minimal connected space yet it is not minimal pre-connected space so $X = A \cup B$ as $A \neq \phi$, $B \neq \phi$, $A \cap B = \phi$ and A, B minimal pre-open set then by Theorem (1.32) (i) we get A and B are minimal open, therefore X is not minimal connected space.

Remark (1.41): The Theorem converse (1.40) is generally not right.

Example (1.42): Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}, \{2, 3\}\}, Po(x) = \{X, \phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}, minimal pre-open = \{\{1\}, \{2\}, \{3\}\}\}$. It is clear that X is minimal pre-connected space yet it is not minimal connected space because $X = \{1\} \cup \{2, 3\}$

Theorem (1.43): Every maximal connected space is maximal pre-connected space.

Proof :Let (X, τ) be a maximal connected space yet it is not maximal pre-connected space so $X = A \cup B$ as $A \neq \phi$, $B \neq \phi$, $A \cap B = \phi$ and A, B minimal pre-open set then by Theorem (1.32) (i) we get A and B are minimal open, therefore X is not minimal connected space. that is a contradiction. Then X is maximal pre-connected space.

Remark (1.44): The theorem converse (2.43) is generally not right.

Example (1.45): Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}, \{2, 3\}\}, Po(x) = \{X, \phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}, maximal pre- open = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}.$ It is clear that X is maximal pre-connected space yet it is not maximal connected space because $X = \{1\} \cup \{2, 3\}.$

Remark (1.46): This diagram showing , the relationships among kinds of minimal connected (resp. maximal connected) space

International Journal of Advanced Research in Science, **Engineering and Technology**

Vol. 6, Issue 7, July 2019

Diagram. 2

REFERENCES

[1] Navalagi , G.B. , "Definition Bank in General Topology ", Internet , 2000.
 [2] Gemignani , M.C. , "Elementary Topology ", University of New York , Addison - Wesley publishing company , inc. , 1972.
 [3] Al-Maleki , N.J. , " some kinds of weakly connected and pair wise connected space ", M.SC. Thesis , University of Baghdad , 2005.

[4] F.Nakaoka and N.oda. " some application of minimal open sets " . Int. J. Math . Sci. 27 - 8- 2001 .

[5] F. Nakaoka and N. Oda . " some application of Maximal open sets " Int . J . Math . Sci , 2002

[6] K. FadhilRadhion minimal and Maximal B*C-open sets . M. Sc. Thesis University of AL-Qadisiyah , 2018 : P.P 52

[7] RyszardEngelking" General Topology " Topology , Dover , New York , 1988 .
[8] Reilly , I. and Ganster , M. , " A Decomposition of continuity ", Acta Math., Hungarica , 1990 .
[9] A. S. Mashhour , M. E. Abd-El-Monsef and S. N. EL Deeb , " on pre-continuous and weak pre-continuous Mapping ".