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ABSTRACT: The prediction of streamflow is an important issue in hydrologic engineering and hydropower 

reservoirmanagement.Several approaches including statistical, physical or conceptual models have been investigated to 

forecast streamflow. Most of the methods assume a linear relationship between the input and output series. However, 

they ignore the nonlinear information hidden in the streamflow series .In this paper, various time series inputs including: 

day length, precipitation, solar radiation, maximum and minimum temperature per day, and vapor pressure have been 

used. An advanced and powerful forecast engine called Nonlinear Echo State Network using Multivariable Polynomial 

(NESN-MP)is used to predict the behaviour of the streamflow. The forecasting is conducted under different climatic 

conditions to indicate the model’s applicability. Furthermore, to demonstrate the efficiency of the proposed method, it 

is compared with Adaptive Neuro-Fuzzy Inference System (ANFIS). The results of the new method compare 

favourably with ANFIS. 

KEYWORDS: Forecasting, nonlinear echo state network using multivariable polynomial (NESN-MP), streamflow. 

I. INTRODUCTION 

 

State estimation and forecasting of streamflow have always been general concerns for engineers. State estimation 

is applied in all energy management systems to identify the present operating state of a system [1-2]. Forecasting is also 

an important and necessary aid to planning and planning is the backbone of effective operations. In hydrology, 

streamflow forecasting is vital for water resources engineers, reservoir operators and water managers who strive to 

balance a range of competing objectives to support their decisions about hydroelectric power programming, flood 

mitigation, agricultural and domestic water supplies, irrigation management as well as maintenance of environmental 

flows [3]. Therefore, developing an optimal streamflow forecasting model as a stochastic property of environmental 

modelling is crucial. However, the existing dynamicity, inherent complexities and chaotic feature in the temporal and 

spatial expansion of the model may obstruct the accurate and reliable prediction process [4]. 

Different statistical, physical or conceptual models have been evolved to forecast streamflow [5]. Statistical 

models, such as regression-based models [6]are extremely simplistic and suffer from a functional form between 

variables prior to the analysis. Therefore, they do not properly account for the relationship between the dependent and 

observed explanatory variables. Physically based numerical models, typically, simulate the streamflow generation 

process through a governing equation employing limited boundary conditions, which need precise data input to enable 

parameter calibration[7].Conceptual hydrological models consider different processes of the hydrological cycle along 

with mathematical formulation to improve the forecasting accuracy[8]such as:the Soil and Water Assessment Tool 

(SWAT) as a semi-distributed conceptual model [9]. Louise J. et al 2017 [10] conducted research to forecast 

streamflow in deterministic and probabilistic terms for all initialization months, flow quintiles, and seasons. The result 

showed a relatively accurate streamflow forecasts from low to high flows, but their model could not decrease uniformly 

with initialization time.  

However, taken as a group, the accuracy of these models is not reliable due to heterogeneous hydrogeological 

characteristics within the watershed system in nature with respect to time and space. In addition, large data input, large 

number of parameters, and broad range of necessary values may limit the application of comprehensive simulation 

models [11]. Furthermore, all of these models assume that the relationship between the input and output series is linear 

or at worst near linear. They thus ignore the nonlinear information hidden in the streamflow series which result in a 

poor model performance. Furthermore, streamflow is under the influence of many factors such as evapotranspiration, 

rainfall, atmospheric circulation and temperature, and its generation process is nonlinear and time-variable. Therefore, 
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in the last two decades, researchers have focused on alternative data-base predictive methods. Several studies have been 

presented on developing soft computing tools with Artificial Intelligence (AI) models. Several computer models have 

been recently conducted to forecast streamflow and corresponding runoff. Some of these models are based on the 

Artificial Neural Networks (ANN), fuzzy network sets, genetic programming, regression algorithms, support vector 

machine; and nonparametric methods such as K-Nearest Neighbour (KNN) Regression [12-13]. Among all mentioned 

methods, the fuzzy network sets depend on the user expertise, while the efficiency of others depends on the model 

ability to find out the relationship between input and output variables. It has been demonstrated that Support Vector 

Machine (SVM) yields the most accurate results compared to Auto Regressive Moving Average (ARMA), ANN, and 

Multiple Linear Regression (MLR) [14], and (something missing?)[12]. On the other hand, Shrestha (2014) indicated 

that the result of annual predicted streamflow using ANN and SVM, throughout the State of Utah, are the same [15]. 

Yong Liu et.al (2016) compared the RVM and SVM for long term streamflow forecasting. They found that RVM 

produces better results for annual streamflow forecasting within a specified climatic condition [16]. Bharti et al. (2017) 

indicated that in forecasting process of monthly runoff, ANN results surpasses the Least Square- Support Vector 

Regression (LS-SVR) results, while LS-SVR results exceed ANN results for monthly sediment prediction [17]. 

ANNs are the most popular artificial intelligence (AI) techniques used in variety of fields especially in time series 

forecasting. Successful prediction results of ANN application in hydrological process such as rainfall-runoff modelling, 

streamflow prediction, reservoir inflow forecasting, rainfall forecasting, and river sediment modelling have been 

recently published. Although different feed forward neural network models have been well documented, the selection 

basis of these models has thus farreceived limited attention [18-19]. Kerh and Lee (2006) introduced ANNs to predict 

flood discharge at downstream stations with data scarcity, using information at upstream stations of the Kaoping River 

[20]. Their model demonstrated that back-propagation of the ANN model performs better than the conventional 

Muskingum method. Due to chaotic behaviour in hydrological time series, one of the most important steps in 

constructing an ANN model for streamflow forecasting is determining the best inputs. Zhao, X. at.al (2017) used the 

Phase Space Reconstruction (PSR) method as an alternative approach to select relevant and important input variables 

for ANN models. They built two different ANN models using the time-lagged records of precipitation and temperature. 

They indicated that ANNs predict daily streamflow in the adjacent ungauged basins as accurate as in the gauged basin 

[21]. Zealand et al (1999) used the ANN trained with back-propagation algorithm to predict streamflow 1-week-ahead 

[22].  However, ANN models have some lapses including over-fitting and under-fitting, slow learning speed, and curse 

of dimensionality and convergence to local minimum. Therefore, in processing of complex hydrological phenomena, 

they betraya poor performance [23-25].Typically, their disadvantages include the following [26]: 

 High complexity and long processing time.  
 

 High dependence on parameter tuning and optimization. 
 

 The requirement for nonconvex optimization that can yield suboptimal results and trap in local optima. 

 

In this paper, NESN-MPhas been used as a forecasting engine. The network consists of a reservoir including 

linear internal states and a readout including nonlinear functions of the internal state. The nonlinear relations between 

the internal states increase the learning capability, which results in high forecasting accuracy while ensuring that the 

quality of forecasting does not deteriorate significantly with time. Furthermore, the performance of the forecasting 

engine is improved by decreasing the number of internal states, and the orders of the weight matrices, which reduces 

the computational load considerably. Furthermore, in all previous research, the results obtained from these studies are 

inconsistent due to difference in study areas, input data sets, and the selected structures for each of the models [27]. 

Many studies have applied the original streamflow time series as the input variables in their forecasting model, which 

results in missing some features of different resolution [28]. Using just one resolution component could not reflect the 

internal mechanism of streamflow .Therefore, daily data is preferred, because it is not significantly affected by external 

factors such as meteorological pattern and anthropogenic activities in the data [29]. However, research has been 

conducted on evaluation of annual, seasonal or monthly streamflow for one-time scale condition [25].Moreover, daily 

streamflow forecasting at different time scales has not been addressed in the literature. 

Based on the outline above, the study in this paper has developed a modified model of ANN to forecast daily 

streamflow based on various time series forcing-data input including daily precipitation, precipitation duration, solar 

radiation, temperature and vapor pressure. The remainder of this study is as follows. Section II provides an overview of 

the NESN. Simulation results are given in Section III, and conclusions are summarized in Section IV. 
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II. NONLINEAR ECHO STATE NETWORK 

This powerful method is simple, effective, with far fewer computations [30]. NESN-MP provides a total of 

2𝑝 + 𝑝2 units;𝑝internal states; 𝑝 squares of the internal states; and 𝑝2 units gained by multiplying the internal states 

and squares of the internal states. Therefore, the order of weight matrices is decreased radically. The weight matrices 

(𝑊, 𝑇, and 𝑉) are then used to calculate the internal states of the reservoir. The vector of internal states is updated using 

𝒙(𝑡+1) = f⁡(𝑊. 𝒙(𝑡) + 𝑉. 𝒔(𝑡+1) + 𝑇. 𝒚(𝑡)) (1) 

and the readout vector is  

𝒙 (𝑡+1) = [𝒙 𝑡+1  , 𝒙2
 𝑡+1 ,   𝒙𝑖1  𝑡+1 

. 𝒙2
𝑖2  𝑡+1 

𝑝

𝑖2=1

𝑝

𝑖1=1

] (2) 

where 𝒙2
 𝑡+1 =  𝑥1 𝑡+1 

2 , 𝑥2 𝑡+1 
2 , … , 𝑥𝑝 𝑡+1 

2  , p is the number of internal states  
𝑁

𝑝+2
 , 𝒔 ∈ 𝑅𝐾×1 is the input vector,𝒙 ∈

𝑅𝑝×1 is the internal state vector, 𝒙 ∈ 𝑅(𝑝2+2𝑝)×1 is the readout vector, and𝒚 ∈ 𝑅𝐿×1 denotes the output states. 

 

Fig. 1. Schematic of NESN-MP. 

 

The matrix 𝑊 ∈ 𝑅𝑝×𝑝  defines the internal state interconnections within the reservoir. The values in 𝑊 are fixed 

values generated randomly over a symmetric interval. 

𝑊 =  𝑤𝑖𝑗  𝑝×𝑝
   ;  𝑤𝑖𝑗 ∈  −1,1  𝑖, 𝑗 = 1,2, … , 𝑝  (3) 

Matrix 𝑉 ∈ 𝑅𝑝×𝐾 , containing randomly chosen fixed values, defines the connections of the input with the internal 

states of the reservoir.  

𝑉 =  𝑣𝑖𝑗  𝑝×𝑘
   ; 𝑣𝑖𝑗 ∈  −1,1  𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑘  (4) 

The output feedback matrix,𝑇 ∈ 𝑅𝑝×𝐿 is 

𝑇 =  𝑡𝑖𝑗  𝑝×𝐿
   ;  𝑡𝑖𝑗 ∈  −1,1  𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝐿  (5) 
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The output matrix,𝑈 ∈ 𝑅𝐿×(𝑝2+2𝑝) is 

𝑈 =  𝑢𝑖𝑗  𝐿×(𝑝2+2𝑝)
   ;  𝑢𝑖𝑗 ∈  −1,1  𝑖 = 1,2, … , 𝐿, 𝑗 = 1,2, … ,2𝑝 + 𝑝2  (6) 

where 𝐾 is the number of inputs, 𝑝 is the number of internal states, and 𝐿 is the number of outputs. 

 

III. SIMULATION RESULTS 

 

The performance of the NESN-MPis tested using climatic observation data (day length, precipitation, solar 

radiation, maximum and minimum temperature per day, and vapor pressure) with a time interval of 24 hours used to 

train and test the proposed methods. Each data set is divided into two separate parts for training and testing, with their 

lengths denoted as 𝐿𝑡𝑟𝑎𝑖𝑛  and 𝐿𝑡𝑒𝑠𝑡 , respectively. The MSE, root mean squared error (RMSE), normalized root-mean-

square error (NRMSE), normalized mean-absolute error (NMAE), and mean absolute error (MAE) shown in (7-11) 

were used to evaluate the performance of the proposed methods.  

NRMSE is often expressed as a percentage and calculated as  

NRMSE =  
   𝑦 𝑖 − 𝑦  𝑖   

2𝑛𝑚𝑎𝑥
𝑖=1

   𝑦 𝑖 − 𝑦   
2𝑛𝑚𝑎𝑥

𝑖=1

× 100% (7) 

where ||●|| indicates the Euclidean norm, 𝒚 are the actual output values, 𝑦  is the average of 𝒚 over the whole target set 

𝑦 1 , 𝑦 2 , . . . , 𝑦 𝑛𝑚𝑎𝑥  , 𝒚  is the predicted output, and 𝑛max is the number of sample points. Lower values in NRMSE 

indicate less residual variance. In many cases, especially for smaller samples, the sample range is likely to be affected 

by the size of sample, which would hamper comparisons.  

MSE measures the average of the squares of the errors, which is always non-negative, and values closer to zero are 

better. Taking the square root of MSE yields RMSE, which has the same units as the estimated quantity. MSE and 

RMSE are calculated as  

MSE =
1

𝑛𝑚𝑎𝑥

 [𝑦 𝑖 − 𝑦  𝑖 ]2
𝑛𝑚𝑎𝑥

𝑖=1
 (8) 

RMSE =
1

𝑛𝑚𝑎𝑥

  [𝑦 𝑖 − 𝑦  𝑖 ]2
𝑛𝑚𝑎𝑥

𝑖=1
 (9) 

MAE calculates the average magnitude of the errors in a set of predictions without considering their direction. It is 

the average over the test sample of the absolute differences between prediction and actual observation where all 

individual differences have equal weight. NMAE normalizes MAE by the range of available rating values. MAE and 

NMAE are defined as  

MAE =
1

𝑛𝑚𝑎𝑥

 |𝑦 𝑖 − 𝑦  𝑖 |

𝑛𝑚𝑎𝑥

𝑖=1

 

(10) 

NMAE =
1

𝑦𝑚𝑎𝑥 . 𝑛𝑚𝑎𝑥

 |𝑦 𝑖 − 𝑦  𝑖 |

𝑛𝑚𝑎𝑥

𝑖=1

 (11) 

where 𝑦max is the maximum value of output. Generally, RMSE and MAE are regularly employed in model evaluation 

studies [26].  
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Fig 2. 67 days prediction in case study in 1995. 

The streamflow forecasting is carried out for 67 days ahead. 𝑙𝑡𝑟𝑎𝑖𝑛 = 200, 𝑙𝑡𝑒𝑠𝑡 = 67 with no overlap and with the 

test data starting immediately after the training data. Fig. 2shows the prediction for 67 days ahead for NESN-MP and 

ANFIS. NESN-MP provide an MAE of 4 for the first 10 days ahead which is significantly below the MAE given by 

ANFIS. This improvement can be seen on the second 10 days more obviously, where MSE and MAE in ANFIS results 

increased considerably while those in the proposed methods remain almost constant. The results clearly show that the 

proposed NESN-MP outperform ANFIS.  

 

http://www.ijarset.com/


   
  

 
ISSN: 2350-0328 

International Journal of AdvancedResearch in Science, 

Engineering and Technology 

Vol. 5, Issue 9 , September 2018 

 

Copyright to IJARSET                                                  www.ijarset.com                                                       6725 

 

 

 

 
Fig 3. 67 days prediction in case study in 2005. 

 

To validate the prediction ability and universality of the proposed methods with different climatic parameters, 67 

days streamflow forecasting in 2005 is shown in Fig. 3. It is shown that the NESN-MP provide an MAE of 9 for the 

first 10 days ahead forecasting which is 92.8% below the MAE for ANFIS, respectively. In case of RMSE, NESN-MP 

gives the respective value of 11.21 which are well below the RMSE of 101.2 for ANFIS. Table 1 shows the error 

indices for both methods for different days. 
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Table 1. Error indices for case study 2005. 

 

  Days 1-10 Days 11-20 Days 21-30 Days31-40 Days 41-50 Days 51-60 

A
N

F
IS

 

𝐌𝐒𝐄 10235 3437 1665 7600 2347 763 

𝐑𝐌𝐒𝐄 101.2 58.62 40.8 87.18 48.45 27.63 

𝐍𝐌𝐀𝐄% 16.22 10.98 7.84 15.93 8.8 5.55 

𝐍𝐑𝐌𝐒𝐄 % 9.2 5.329 3.7 7.92 4.4 2.51 

𝐌𝐀𝐄 73 49.4 35.3 71.7 39.6 25 

N
E

S
N

-M
P

 

𝐌𝐒𝐄 125 43.2 219 264 94.5 80.8 

𝐑𝐌𝐒𝐄 11.21 6.57 14.8 16.26 9.7 8.98 

𝐍𝐌𝐀𝐄% 2 1.2 2.95 2.7 1.89 1.82 

𝐍𝐑𝐌𝐒𝐄 % 1.02 0.6 1.34 1.47 0.88 0.81 

𝐌𝐀𝐄 9 5.4 13.3 12.2 8.5 8.2 

 

IV. CONCLUSION 

 

This study presents daily streamflow forecast based on various time series forcing-data inputs including daily 

precipitation, precipitation duration, solar radiation, temperature and vapor pressure. A novel echo state networks called 

NESN-MP has been used as forecasting engine. The nonlinear relations between the internal states increase the 

learning capability, which results in high forecasting accuracy while ensuring that the quality of forecasting does not 

deteriorate significantly with time. Furthermore, the daily values for different parameters which affect the streamflow 

provide accurate forecasting. Simulation results validate the performance of the proposed method and demonstrate its 

superiority over ANFIS. NESN-MP provides significantly lower values than those given by ANFIS for MAE, NMAE, 

MSE, RMSE, and NRMSE. Future work will compare the proposed method with the classical methods. 
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