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ABSTRACT: This article presents mathematical models of technological systems for processing the parts of low 

rigidity in an elastically deformed state in dynamic modes. Functional dependencies for technological systems with 

various types of elastically deformed state of nonrigid parts are obtained. Mathematical models are developed for 

controlling the precision of processing of elastically deformed parts under longitudinal-transverse bending. It is found 

that an increase in rigidity due to tension leads to a decrease in strain of the treated shaft and a decrease in the transient 

process. Based on simulation results of technological system, a calculation of elastically deformed state of the shaft at 

turning is proposed. Results of experimental studies of the precision of parts shape at the processing of shafts in an 

elastically deformed state are presented. 
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I. INTRODUCTION 

 

In modern mechanical engineering, the problem of increasing the precision of machining of low rigidity parts that are 

widely used in machines and mechanisms is especially acute; this is associated with modern trends to reduce metal 

consumption, with wide use of parts of functional specific purpose. Such details constitute a significant share of the 

product range in precision engineering, instrumentation, aviation and space industries. Traditional methods to improve 

the accuracy of machining of nonrigid parts, based on the introduction of multi-pass processing, the reduction of the 

intensity of cutting regimes, the application of lunettes, the introduction of additional passes and manual finishing, lead 

to a significant decrease in productivity and, in many cases, do not give the desired result. This predetermines a special 

interest in the search for new effective ways to control the accuracy of the technological system (TS) with nonrigid 

elements [1]. 

 The problem of control the technological systems for the machining of small rigidity parts that provide the required 

accuracy and surface quality is hampered by the fact that during machining the part itself, the tool and the machine 

nodes, being in relative motion, represent a complex dynamic system whose behavior in advance it is practically 

impossible to determine without targeted and theoretical researches. The most expedient direction to solve the 

problem is the control of technological systems of machining of nonrigid parts in an elastically deformed state on the 

basis of scientifically grounded technological methods of influencing the workpiece. When forming a mathematical 

description of the control object - the elastic line of a nonrigid shaft - in steady-state modes, it is necessary to take into 

account the fixing methods, loading conditions. The model obtained in this case should be simple enough for further 

use in precision control problems, but at the same time it should correspond to a priori information about the 

mechanisms, links and parameters of the phenomena. At the same time, factors that exert a dominant influence on the 

precision indexes of the machining should be singled out [2, 3]. 

Mathematical description of elastic line based on the studying of detail and tool real interaction is constructed taking 

into consideration the generally system principles developing at the present time [4]. At that developed mathematical 

models must meet the community requirements that mean they must provide possibility to include them to given 

modeling system and CAD. On these positions the method of set problem realization will be standard in some relations, 

but in cases of coincidence with set purposes the results known researches in this field will be used. Digression from 

the generally accepted way is to give it some of the following qualities: universality, accuracy and economy. 
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II. CONSTRUCTION OF MATHEMATICAL MODELS OF NONRIGID SHAFTS TURNING 

TECHNOLOGICAL SYSTEMS 

 

In researches and at the construction of MM in the set modes next assumptions are accepted: a technological process is 

considered continuous and steady in the flow of treatment of one detail; speed of rotation, serve, cutting ability of tool 

in the process of treatment of one detail accepted by unchanging; initial conditions are determined by the moment of 

touch the tool of detail and formation of pull in TS; ТS is limited to the area a "head stock - nonrigid shaft - poppet 

head "; inflexibility and resilient moving of ТS are taken into account only in radial direction; as the guided data-out of 

exactness deviations of form of billow are accepted from cylindrical form; the size of rejection of form is accepted by 

proportional to bending in the corresponding sections of non-rigid workpiece.  

At a ТS control of non-rigid shafts turning, based on the change of their elastic deformed state, as regulative influences 

the separate are used or combination of the managed power influences: central and eccentric tension, eccentrically 

compression; management by the additional power influences sent to indemnification of force factors from the process 

of cutting; by flexion moments on supports; control of flexural-torsional force deformation [5-8].  

The most important aspect of such research is the possibility to observe transient processes in the cycle of machining 

and the accompanying dynamic phenomena, which makes it possible to detect the conditions for eliminating or 

reducing their negative influence on the quality of the treated surface. 

The mathematical model (MM) of ТS in the set modes is here formed as functional dependence, reflecting influence of 

the regulative and revolting affecting size of resilient deformations of detail in the examined section. On the basis of 

laws of mechanics of the deformed solid [8,9] functional dependences are got for ТS with the different types of the 

elastic deformed state of non-rigid details that is presented in a Table 1.  

Table 1. Conditions for loading parts at the management of an elastically deformed state 

 

 

Fixing of detail at the appendix of central stretching force can be carried out in the collet chuck. Such method of fixing 

is interpreted as a hard sealing-off with possibility of the axial moving (Table 1, lines 2 and 3). With the purpose of 

minimization of the resilient bending may be also management by the corner of turn of detail in the place of fixing, by 

the appendix of eccentric tension [9,10]. This variety of fixing can be also presented by movable joint support (Table 1, 

line 4). The fundamental difference of the indicated chart is excitation of the guided moment in the point of fixing of 

detail due to eccentric tension. Thus appendix of one guided force factor - eccentric tension gives an opportunity of 
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creation of two force factors in any section of detail set in advance, in particular, in the zone of treatment: longitudinal 

force 
1xP  and bending moment

2 1xM P e  , of counteractive to cutting forces, that means the purposeful elastic 

deformed state of shaft. 

The question of choice of concrete type of model can be decided only after a final structural decision about a method 

and construction of fixing model, self-reactance authentication and analysis of closeness of the results got on a 

simulation model with experimental data.  

The following designations are accepted in the Table 1: e - eccentricity at eccentric tension; M1 - the moment created 

by the axial component of the cutting force Px; X1, X2, X3 - current coordinates for each of the sections; a - the distance 

between the tool and the shafts fixture at the headstock; Q0 and M0 - initial parameters: transversal force and moment in 

a bonding, accordingly. 

One of methods allowing to get  MM-description of the shape of the elastic line,  depending on the parameters of detail 

and parameters of treatment (loading efforts), a power method of Ritz is [9,11-13], by means of that is got the function 

of bending of the stretched-bent shaft with fully-fixed ends (Table 1, line 2).  

Another method that allows us to obtain results useful for practical purposes is the construction of a description of the 

elastic line of a nonrigid part in the longitudinally transverse bending in the form of a system of fourth-order 

differential equations with constant coefficients [11-13]. In the presence of concentrated forces and moments for each 

of the sections to which these perturbations break the length of the part, well-grounded the differential equations 

(central tension - a model 3, Table1) 
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where  
IE

Px


 1 .  

}2,1{i .                                                                            (2)    

The decision of equation (1) can be written down as                                                                        
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and equation of bending for segment I with subject to the Eq. (5) and formula for  can be written as 
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Constant coefficients A2, B2, C2 and D2 are determined from the boundary conditions X2=0, the equilibrium conditions 

and compatibility of deformations Y'1(a)= Y'2(0), EI
.
Y1″(a)= EI

.
Y2″(0), EI

.
Y1'''(a)+Pb= EI

.
Y2'''(0)=0 and equal 

     ,

  ,

3

0

23

0

2

3

00
23

0

2

00

0

EI

achMashQ
D

EI

PashMachQ
C

EI

achMashQ
 B

EI

PashMachQ
A

b

b




































                            (7)  

and equation of bending on segment II can be written as 
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The equations of bending in sections I and II for the case Eq. (4) are obtained in a similar way and are given in column 

4 of Table 1. The values of the initial parameters Q0 and M0 are determined by the boundary conditions at the end of 

the shaft: 

0)('2  aLY                                                                               (9) 

and the equation of bending at the end of a tensile-deflected shaft 

)()( 21 aLYaY  .                                                                         (10) 

Results of decision of equations (9) and (10) presented in a column 5, Table 1. 

At eccentric tension (model 4, 0xP , 0e ,Table 1) differential equations (1) for each of I and II sections written as:  
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1 , decision  Eq. (11) and Eq. (12) are written in the form Eq. (3) with allowance 

for the value 1 to  I section. The substitution of boundary conditions, equilibrium conditions, and compatibility 

conditions for deformations (column 3, Table1) into equations (11) and (12) leads to descriptions of bending presented 

in column 4 of Table 1. 

The initial parameters Q0 and M0 are determined by the boundary conditions Eq. (9) and the equilibrium conditions 

0)(
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,                                         (13) 

and the obtained values of Q0 and M0 are given in column 5 of Table 1. 

Fig. 1 shows the results of numerical simulation on a computer of the values of elastic deflections of parts in the 

machining zone X=a; the number of analytical dependence corresponds to the model number in Table. 1. Dependence 5 

is obtained experimentally at part fixing in the holder of the headstock and in the collet clamp of the tailstock without 

the possibility of section rotation at the fixing point (model 3, Table 1). 

  
Figure 1. Analytical dependences of the change in elastic deflections of shafts at X=a, d= 4 mm:   

а)  Рx1=1960 H; b)  Рx1=980 H; curve 5 is obtained experimentally 

 

Analysis of results shows that the convergence of results of calculations on a computer of MM 2 with the data of 

experimental tests on the stand is 3% -12%, and the calculations carried out with MM 4 under the assumption of 

01 XP , 0e  completely correspond to the data obtained with the model 1. 
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Mathematical models of various technological processing systems with control of the elastically deformed state in 

steady-state conditions are received under the assumption that the bending force acting on the workpiece is an external 

variable that does not depend on the elastic deformations of the system. Such approach is based on neglecting the 

closure of the elastic system through the cutting process and does not introduce significant errors into the results of 

analysis of the statistical characteristics of the control object. At the same time, as analysis shows, the construction of 

an adequate mathematical model of the control object in transient regimes is impossible without taking into account the 

features of the processes in the processing zone and the closure of the TS through the cutting process. 

 

III. CALCULATION OF THE ELASTICALLY DEFORMED STATE OF THE SHAFT-PULLER AT 

TURNING ON THE BASIS OF THE RESULTS OF MODELING TECHNOLOGICAL SYSTEM 

 

In order to evaluate the possibilities of the method and establish the theoretical regularities of the behavior of the part in 

longitudinal-transverse bending [14-16], the equation of the elastic line of a low-rigid shaft was solved on the basis of 

the calculation scheme in Fig. 2. 

 
Figure 2. Calculation scheme of stresses and elastic line of the shaft by stretching:е =0.001– eccentricity of stretching 

force putting; Мsh– cutting forces moment; Mx=Px1∙e=34.822·0.001=0.034822 Nm –tensile stress moment 

 

Description of low rigged shaft elastic line by longitudinal-transverse bend can be represented in the form of fourth 

order differential equations with the constant coefficients [12,14]. The equation (1) can be written as:                                                                       

024  ii yky  .                                                                          (14) 

This equation gives the total elastic line equation for stretching and carrying an arbitrary transverse loading beam 
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 , 000  , , yyy   − accordingly deflection, rotary angle, the second and the third derivates in the 

coordinates beginning; 102...3k  − coefficient determining the details fixing method;  f(x) – function of transverse 

loading influence [14]. 

Elastic line equations on segments I and II (calculation scheme Fig. 2) are 
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The initial parameters are determined by the following: 
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where 
l

al 
 ; l – detail length; a – coordinate of application of the transverse loading. 
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Taking into account that the stretching moment was put at the coordinates beginning it is necessary to determine the 

initial parameter 0y  . We find it by differentiation of Eq. (15) 

kxkykxkyyII sincos 2
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''   .                                                           (16) 

After the multiplication of Eq.(16) to bending and stretching rigidity we will get the equation of bending moment on 

segment I, taking into account 
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On the base of the system numerical variables [14,17-19] and calculation scheme, the deflections and puller shaft 

turning accuracy were calculated and the results are represented in Table 2 and on Fig. 3. 

Table 2. The results of calculation of deflections and shaft turning accuracy. 

Т, s 
0y , μm Iy , μm IIy , μm 

defy , μm 

0 0 -97.22 32300 32300 

0.1 0.1 0.018 -6.38 -6.38 

0.2 0.2 0.0585 -7.71 -7.71 

0.3 0.3 -0.06295 -3.67 -3.67 

0.4 0.4 0.09134 -8.8 -8.8 

0.5 0.5 0.00263 -5.853 -5.853 

0.6 0.6 0.4888 -7.392 -7.392 

0.7 0.7 0.0628 -7.856 -7.856 

0.8 0.8 0.04888 -7.392 -7.392 

0.9 0.9 -0.1133 -1.994 -1.994 

1 1 -0.21978 1.5483 1.5483 
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Figure 3. The behavior of accuracy changes for the technological process of shaft turning. 

 

IV. EXPERIMENTAL RESEARCHES OF THE SURFACE ACCURACY OF THE "SHAFT- PULLER" OF 

THE COTTON PICKING MACHINE APPARATUS AT AN ELASTICALLY DEFORMED STATE TURNED 

 

To perform empirical studies on the influence of machining using control method of elastically deformed state and at 

standard turning on the geometric accuracy of the form of surface, a roundness measuring machine is used to estimate 

the error of the surface form. The Taylor-Hobson device was used to construct circular plots of cross-sections of 

workpiece shafts, used as base surfaces. 

The measurements were made on the following deviations of the shape of the manufactured part:  

1) removing the deviation from the cylindrical shape. Visualization of measurements is shown in Fig. 4;  

2) removing of the roundness deviation of the shape of experimental samples of shafts-pullers in five sections. 

       

                                                          a)                                                             b) 

Figure 4. Cylindricity deviation of the shaft-puller: a) turning in the elastically deformed state; b) at normal turning 

Analysis of results on the roundness of the part is carried out in five sections. Visualization of the process of measuring 

the error from the roundness of the surface form is shown in the form of circular plots in Fig. 5. 

 
Figure 5. Roundness deviation of the shaft-puller: a) turning of the shaft with tensile force; b) machining without 

tension, at normal turning 
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Analysis of circular plots shows that roundness deviation of the base surface decreases by 1.3 ... 2 times, depending on 

physical-mechanical properties of material, its initial profile and longitudinal-transverse load on the workpiece shaft. 

 

VI. CONCLUSION  

 

As a result of analysis of control methods of technological systems of nonrigid shafts turning, it has been revealed that 

the factors that should be taken into consideration are: relatively low rigidity of the part and the metalworking 

equipment, as well as the inherent elastic deformations of nonrigid details, leading to deviations in surface form and 

deterioration of the quality of the machined shafts surfaces. 

From the analysis of the developed mathematical models and analytically constructed dependences of the changes in 

the elastic deflections of parts in the control of technological systems for processing parts in an elastically deformed 

state, using the application of central and eccentric tensile forces as well as longitudinal and transverse bending, it 

follows that the theoretically specified accuracy of machining can be achieved by controlling two parameters, the value 

of elastic deflections may be reduced by 15 times,  and be equal to (3-5)∙10
-3

 mm and is practically stabilized along the 

entire length. 

Developed methods of shaft turning due to eccentric tension by longitudinal force and due to application of bending 

moments provide an increase in processing accuracy by an order of magnitude in comparison with the previous 

developments. 

Improvement in machining accuracy and reliability of technological process of turning is achieved by constructing and 

using more accurate mathematical models taking into account the features of the phenomena occurring in the 

processing zone and elastic deflections in technological system and the use of obtained MM in the development of the 

optimal control algorithms. 
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