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ABSTRACT:. A theory of nonstationary vibrations of a three-layer viscoelastic plate is developed on the basis of a flat 

formulation of the problem on the basis of exact solutions of the equations of the linear theory of viscoelasticity in 

transformations. Equations of vibration of symmetric vibrations of an infinite three-layer plate in terms of two auxiliary 

functions that are the main parts of the displacements of some intermediate surface of the middle layer. An algorithm is 

proposed that allows one to uniquely determine the VAT of an arbitrary layer of a plate. 
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I. INTRODUCTION 
 

The theory of elastic and viscoelastic plastics is one of the sections of the three-dimensional theory of elasticity. 

In this section, we consider that problems of their calculation, under which the boundary conditions on the side surfaces 

of the plate are given in the stresses. In this case, the construction of the basic relations of the theory of plates consists 

in reducing the three-dimensional problem to a two-dimensional one. Different methods and approaches are used to 

achieve the goal. Absolutely, various simplifying hypotheses and assumptions. These hypotheses and assumptions lead 

to significant shortcomings and errors with the simplifications,  [1].  

In the last decades, multi-layered, in particular three-layered saucers are widely used in various fields of engineering 

and construction. In many cases, dynamic calculations of plates are carried out according to the classical theory of 

Kirchhoff. Therefore, very often, such calculations prove to be suitable only for low-frequency oscillatory processes. 

To such belong a considerable amount of research. An analysis of some of them is given in [2,3,4].   

These shortcomings include both classical and refined shield vibration theories. Therefore, many researchers have 

attempted to refine the differential equations of vibration [5,6]. At the same time, we try to derive the equations of 

vibrations that take into account various physical, mechanical or geometric factors. Further development and 

refinement of the classical theory can be divided into two areas: development of asymptotic theories and theories of the 

type of Timoshenko and Reissner [7]. In addition, depending on the factors considered, the methods for deriving the 

differential equations of vibration based on the dynamic theory of elasticity are also divided into other directions. 

 One of them is the method of using general solutions of three-dimensional problems of the dynamic theory of 

elasticity, which is very popular [4]. A significant and successful application to the problems of dynamics, this method 

was obtained in the works of I.G.Filippov and his students [8,9]. It is based on the use of integral transformations in 

coordinate and time. It effectively uses the general solutions of the three-dimensional problems of the theory of 

elasticity (viscoelasticity) in transformations. Subsequently, these solutions are decomposed into power series to 

approximate the satisfaction of the dynamic conditions given on the boundary surfaces of the plate [10, 11]. 

The essence of the method is reduced to the study of the constructed solutions for various types of external 

influences. The clarification of the conditions under which the displacements or their “principal parts” satisfy simple 

partial differential equations forms the basis of the method [12]. It includes the creation of an algorithm that allows one 

to calculate the approximate values of dislodgment and stress fields from the field of these "main parts".  
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II. EQUATIONS OF MOTION 

 

We consider an infinite isotropic rectangular three-layer shield, 

referred to a rectangular Cartesian coordinate system to a rectangular 

Cartesian coordinate system Оxyz ,  yx, . It is assumed that 

the space between the rigid marginal layers is filled with a lighter, and 

therefore less rigid, material (filler) that holds the layers at this distance 

and carries out their joint work. It is also assumed that the contacts 

between the load-bearing layers and the filler are rigid. 

 Considering the unlimited size of the shield, it is further assumed that it is 

in a plane deformation condition (Fig. 1). The axis Оx  is directed along 

the cross section Оxz  on its middle line, and the axis Оz  – up. The 

layers of the plate are numbered as shown in Fig. the upper carrier layer is called the first layer, the lower carrier layer 

is the second one, and the filler is the zero layer. Let, 1h , 02h  and 2h  be the thicknesses of the first, zero and second 

layers; ,m m  - the Lamé coefficients and m - bulk density of layers  2,1,0m . Stress dependencies 
 m

ij from 

deformations 
 m

ij  at the points of the layers, the surfaces are described by Hooke's law. In this case, the equations of 

motion of the points of the layers in the Cartesian coordinate system are greatly simplified by introducing functions  

 tzxm ,,
 
and  tzxm ,, . Here m and m  are the potentials of the longitudinal and transverse waves, 

respectively. In the case of planar deformation, taking into account that the displacement vectors of the points of the 

layers  
mm

mm WUUU ,


  decompose only by unit vectors i


, k


 the equations of motion are reduced to the 

wave equations 

;2

mmm a        ,2

mmm b                                                (1)   

where ma , mb - the velocity of longitudinal and transverse waves in the layers;  - two-dimensional differential 

Laplace operator. In this case, the components of the dislodgment vectors, as well as stress tensors and deformations of 

the layers, are expressed in terms of the introduced functions m  and m . 

It is assumed that at 0t the plate was at rest, and at the time 0t , the dynamic surfaces are subjected to dynamic 

effects. Because of the linearity of the problem, it is possible to represent mixing fields, in the form of an overlap of a 

symmetric and antisymmetric parts 
a

m

s

mm UUU


 , 

where 
s

mU


- symmetrical (longitudinal), 
a

mU


- antisymmetric (bending) parts of the displacement fields of the layers of 

the plate. In this case, the symmetric parts must satisfy the boundary conditions for  ,)1( 1  i

i hz   ,0

*

ii hhh 

  

       ;; i

z

i

zz

i

x

i

xz ff    .2,1i                                                      (2) 

In addition, dynamic and kinematic contact conditions occur on the aggregate surfaces: 

при 0hz 
           

    ,10

xzxz  
   

    ,10

zzzz     ,10 UU     ;10 WW   

при 0hz 
          

    ,20

xzxz      
    ,20

zzzz     ,20 UU     .20 WW                      (3) 

The initial conditions are zero.      

 

III. SOLUTION METHOD 

 

It is necessary to give expressions for the functions 
   txf x ,2,1

 and 
   txf z ,2,1

 
from the boundary conditions in 

solving the problem,. Following [5], the functions of external influences can be represented in the form  

Fig. 1. 
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                                             (4)  

 

where 
   pkf x ,2,1

, and 
   pkf z ,2,1

 - are functions regular for ,0Re p that have a finite number of poles and 

take arbitrary values within some region  pk,  containing an interval  00 ,  ii  of the imaginary axis, 

decreasing for  ip   no slower than 
0n

p


, where 10 n , and such that outside  pk, their values are 

negligible are small. In addition, the functions 
  pkf x ,

~ 2,1
 and 

   pkf z ,
~ 2,1

are analytic, taking arbitrary values in 

intervals  0,0 k , decreasing for k , as 
0n

k


, and negligible for 0kk  ;  l – a contour 0Re p  on 

the complex plane  p , leaving the region to the right  pk, of itself. 

According to the accepted representations of the external action functions, the solution of the problem is also sought in 

the form (4). This allows us to obtain from (1) ordinary second-order differential equations. In case of symmetric 

influences, when there are longitudinal vibrations of the plate, the solution of the equations obtained will be  

    ,,,~ 1 zchApkz
mmm

       2,1,0.,,~ 1  mzshBpkz
mmm

                    (5)

 were   

;2222

mm apk 

  
 

.2222

mm bpk 

 The displacements mU  and mW can also be represented in the form (4) and substituting together with (5) in the 

displacement expressions, for the transformed mU
~

 and mW
~

 we have expressions in terms of hyperbolic functions and 

integration constants. Further, using standard expansions of hyperbolic functions in power series, we obtain 

    
 

;
!2

~

0

2
11212







n

n

m
n

mm
n

mm
n

z
BAkU    

    
 











0

12
112122

!12

~

n

n

m
n

mm
n

mm
n

z
BkAW  .   (6) 

As the unknown functions in the equations of vibration of a three-layered plate, we take the principal parts of the 

transformed displacements 0

~
U  and 0

~
W  of the surface of the zero layer, the distance from the surface 0z  of which 

is given by 

0h                             10;01    

were   - a constant number satisfying the inequality 11   . To this end, we take in (6)   ,z  0m   and  

0n . Then, introducing the notation 
 0

0

~
U  and 

 0

0

~
W , we obtain  

     1

00

1

0

0

0

~
BkAU  ;           

       1
00

1
0

2
0

0
0

~
BkAW  .                      (7)  

Having solved the system with respect 
 1
0A  and 

 1
00B , we express them through 

 0

0

~
U   and  

 0

0

~
W . From the contact 

conditions (3) there are expressions for the constants 
 1

mA  and 
 1

mB  with .2,1m  Then they are substituted into the 

boundary conditions (2). This makes it possible to obtain the equations of symmetric vibrations of a three-layer plate in 

the following form 
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                               1A [
 0

0W
x


] + 1B [

 0

0U ] = 1S [
 1

xf ],                  

2A [
 0

0W ] + 2B [
 0

0U
x


] = 2S [

 1

zf ],                                           (8) 

were kA , kB , kS - differential operators of the same structure, having the form 

                 kD =
4

4

322

4

24

4

1
x

D
tx

D
t

D kkk













+

62

2

52

2

4 kkk D
x

D
t

D 








; 

kjD  are equal kjA , kjB  or kjS :  

……    
36

9464
12

21
2

0

3

1
1001

4

01
0113

hz
qqqq

hz
qqA  ;  ……. 226 1 qA  ; 

  
6

11113 2
01

2
1

2
1

2
0

01
11

hz

aba

qq
B

















  ;

6

1 3

1

2

1

2

1

1 z

ba

q 
 …….  ;1 226 qB    

12

1
4
0

22

1
1

h

ba
S

ii

ii


  ;………….. 
1

6


 iiS  , 

where  2,1i ; 101 hhz  ; 202 hhz  ; 
m

m
mq




1 ; ma , mb - respectively, the velocity of 

longitudinal and transverse waves in the plate material. Thus the displacements of the plate points are determined by 

the formulas

 

 

             ;,,
2

1
,,1

2
1

2
1,,

0
0

2

0
0

02
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02
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00 tzxW
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z
qtzxU
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z
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z
qtzxU






























 

      





































 tzxWz

x

z
q

t

z
q

b
tzxW ,,

6
1

6

11
,,

0
02

23

02

23

02
0

0


                         (9)

  

   

  tzxU
x

z

xt
q ,,

6

0

0

3

2

2

2

2

0




















 . 

 

IV. APPLIED STATEMENT PROBLEM ITS DECISION 

 

Let’s consider the problem of symmetric vibrations of a shield clamped in the longitudinal direction, at 0x  and 

lx  , where l - length plate in the direction of the axis .Ox  As vibration equations, we take the system (8). The 

boundary conditions of the problem have the form 

 
0

0
0 U ; 

 

0
2

0
0

2






x

U
; 

 

0
0

0 




x

W
; 

 

0
3

0

0

3






x

W
.   

The initial conditions are assumed to be zero.                              

The solution of the system of equations (8), which includs the conditions for fixing the ends, and also the 

functions of external actions, is represented in the form. 

    





1

0

0 sin
m l

xm
tuU


;    






1

0

0 cos
m l

xm
twW


;  







1

sin

m

xmx
l

xm
tff


;  







1

cos

m

zmz
l

xm
tff


;   (10) 
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The substitution of (10) into (8) leads to a system of two fourth-order differential equations with respect to the 

functions  tu  and  tw . The problem was solved numerically at the following values of the physico-mechanical and 

geometric parameters of the three-layer plate: 09.0 h ;   ml 4.0 ; mh 04.00  ; mh 001.01  ; mh 001.02  ; 

3

0 /30 mkg ; 3

1 /2700 mkg ; 3

2 /2700 mkg ; PaE 9

0 10165.0  ; PaE 9

1 1069  ; 

PaE 9
2 1069  ; 03125.00  ; 33.01  ; 33.02  ;   2ttf xm  ;   23ttf zm  . The results are shown in Fig. 

2-5 in the form of graphs of the longitudinal and transverse displacements of the points of the middle layer and normal 

stresses in its various sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 
 

From the presented graphs in Fig. 2-3 it follows that the longitudinal displacement of the points of different sections 

reaches their maximum at values between 0.6 and 0.8 of the dimensionless time. Negative values of longitudinal 

displacement indicate that the shield for weight the period of action of the external load undergoes compression. The 

transverse displacement of the point of the cross sections has a sinusoidal character as a function of time. At the same 

time, it reaches its maximum at a value of the dimensionless time close to 0.4. The maximum value of the longitudinal 

displacement corresponds to the zero value of the lateral displacement. In addition, at the beginning of the process and 

Fig. 4. Dependence of displacement xx  on time at 

2.0x ( ); 0.3 ( ); 0.4 ( ); 0.6( ). 

 

xx

 

 

t  

 

t  

 

zz
 

 

Fig. 5. Dependence of displacement zz  on time at 

2.0x ( ); 0.3 ( ); 0.4 ( ); 0.6( ). 

 

Fig. 3. Dependence of displacement W   on time 

at 2.0x ( ); 0.3 ( ); 0.4 ( ); 0.6( ). 

. 

 

  

t   

W
  

Fig. 2. Dependence of displacement U  on time 

at 2.0x ( ); 0.3 ( ); 0.4( ); 0.6( ). 
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further to the time value of 0.63-0.66, the transverse displacement is negative, and at 0.65 <t <0.7. Further, it remains 

positive with a relative maximum at 0.82.   

Following graphs (Figs. 4-5) are in good agreement with the dependencies of displacements, having relative maxima at 

the points where the displacements are minimal. At the points of maximum displacement values, it should be noted that 

corresponding stresses are minimal. 
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