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ABSTRACT: In the paper a hydrodynamic model, describing physicochemical water flooding in fractured-porous oil 

reservoirs, is numerically analyzed. An element of fractured porous media is modeled as a single fracture and adjacent 

porous block. Concentration of solute in the water, adsorbed mass field, as well as relative mass flux of solute through 

common boundary of the fracture and porous matrix are determined and analyzed. Three types of adsorption isotherms 

are considered: linear isotherm (Henry law), Langmuir and Freundlich isotherms. Influences of isotherm type on solute 

transport characteristics are analyzed. 
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I. INTRODUCTION 

 

Many of oil and gas reservoirs in the world have the fractured structure. The successful design and development of 

these reservoirs can be performed only on the basis of good understanding and characterization and modeling of 

fractures, fracture networks, and fractured porous media. It should be noted that when one speaks of a fracture network, 

fluid is only contained in the fractures, and the medium located in between the fractures is impervious. However, when 

one speaks of a fractured porous medium, the solid matrix located in between the fractures is porous and permeable; 

fluid flows inside the fractures and in the porous matrix and is transferred from one to the other according to different 

laws [1]. In [1] the macroscopic properties of fractures, fracture networks and fractured porous media from easily 

measurable quantities are estimated. 

Fluid flow and contaminant transport in fractured porous media (FPM) are quite different from that in simple porous 

media [2]. The most commonly used model of FPM represents the media as a network of fractures surrounded by 

porous blocks [3,4,5]. Both fractures and porous blocks are assumed as two coexisting continuums.  In other words, 

this double-porosity model, is still useful instrument to study fluid flow in FPM, although no longer it is viewed as the 

only practicable model, there are different models and approaches simulating flow and transport in large-scale fractured 

porous media [2]. 

 

Fractured aquifers are an important source of water for public, industrial and agricultural use [6]. Many of aquifers 

have also fractured structure. Modeling physical, mechanical and chemical processes in such fractured aquifers has 

become increasingly important in water resources development and groundwater contamination. In [6] concepts and 

methods for characterizing flow and transport in FPM from an experimental and modeling perspective on the basis of 

aquifer-analogue concept are presented. 

 

Fractures of FPM play a preferential flow and transport paths then porous blocks. These features create distinctiveness 

in the transport characteristics of solute migration and can be represented by models based on a dual porous medium 

approach [7]. Diffusion of solutes in non-homogeneous porous media consisting of high and low-permeability zones 

has been studied extensively. For instance, diffusion of solutes from fractures into micro-fissures and porous matrix is 
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known to significantly retard radionuclide transport within bedrock surrounding a repository [8,9]. So, diffusion of the 

solute from liquid flowing along the fractures into the porous blocks is the most important retardation mechanism. This 

two zone model approach or “mobile – immobile” approach was developed and studied by many authors [10, 11, 12, 

13, 14, 15, 16]. In FPM two pore domains can be considered: 1) fracture domain or inter-aggregate pore space with 

faster flow and domain and 2) rock porous matrix or intra-aggregate pore space domain with slower or no flow [17]. 

The difference in flow and solute transport in the two domains may be accounted for by using a physical non 

equilibrium concept [18]. In general, it is better to consider such non-homogeneous media as dual-velocity or dual-

permeability media. In such a media faster fluid flow and solute transport in inter-aggregate pore space or fractures and 

slower flow and solute transport in the intra-aggregate pore space can occur. The transport mechanism for solutes will 

be advection and dispersion in the two pore domains and diffusive transfer between the domains [17]. In “mobile-

immobile” models in the mobile zone the transport governed by convection and diffusion mechanisms whereas in the 

immobile zone the transport mechanism is only diffusive. So, the dual-porosity approach and mobile-immobile 

approach are similar.  

 

Models for solute transport in FPM can be conditionally divided into two groups: 1) without determination of the 

structure of the medium 2) with concretizing the geometry of the medium. In [14] an analytical solution for describing 

nonreactive solute transport in fractured media where the solute diffuses from the fracture into the adjacent porous 

matrix is presented. The governing conditions include one-dimensional advective transport in the fracture and one-

dimensional diffusive transport (normal to the fracture) into the porous matrix. The medium consists of single fracture 

and adjacent porous matrix and therefore the model is of the second group. The use of the solution and the effect of 

matrix diffusion is illustrated by simulation of the effluent breakthrough curve data from a laboratory study of chloride 

transport through a large, relatively undisturbed column of fractured till. Long-range transport through a single discrete 

fracture is illustrated with a hypothetical example in the context of deep geologic disposal of radioactive or toxic wastes 

[14]. We use the schematization of the FPM [14] to study solute transport with different kinds of adsorption. 

 

Currently, mathematical modelling is frequently applied to the mechanics of continuous media and in particular to 

subsurface fluid dynamics. The latter deals with such important theoretical and practical issues as water flow through 

dams, soil salinization, the spread of pollution by groundwater flows, oil production, groundwater flow into artesian 

wells and many others. The similarity of the physical processes involved in these phenomena means that their models 

also have many similarities, although the model equations all have their own special characteristics. It is in fact these 

special characteristics that make it very difficult to validate the models and solve the equations [19]. 

In this paper a mathematical model of solute transport in a medium consisting of a fracture and an adjacent infinity 

porous block is developed. In the fracture, that treated as a one dimensional media, solute transport governed by 

convection, diffusion, adsorption and mass-transfer to the porous block effects. End in the porous medium no 

convection occurs, solute transport mechanisms are only diffusion and adsorption. Different types of adsorption 

isotherms are considered: linear (Henry law), Langmuir and Freundlich isotherms. A solute transport problem is posed 

and numerically solved. Solute concentration distribution and adsorbed mass distribution, as well as local, cumulative 

and total solute mass transfer from the fracture to the porous block are determined and illustrated. 

 

II.FORMULATION OF THE PROBLEM 

 

Consider the solute transport in an element of fractured-porous media, consisting of a single fracture and an adjacent 

porous block (Figure 1). 

                                            
 

              Fig.1. Schematic representation of the solute transport and the flow of liquid in fractured-porous media. 
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Let the convection-diffusion solute transport takes place along the fracture, and only the diffusion transport–in the 

porous block. Fluid flow in the fracture is created with a velocity V  averaged over the cross section of the fracture. 

Then the solute transport in the fracture and the porous block, taking into account the adsorption effects, is described by 

a system of equations like to [20,21] 
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where  yxtcc mm ,, – solute concentration in porous block (matrix), non-dimensional,  xtcc ff ,  – averaged 

solute concentration over the cross section of the fracture, non-dimensional, 
m – porosity of matrix, 

*

mD – effective 

diffusion coefficient in the matrix, sm 2
,



fD – convective diffusion coefficient in the fracture sm 2
, V – averaged 

velocity of fluid motion in the fracture , sm ,  – bulk density of the total saturated medium – fractured-porous media, 

3mkg , ms , fs – the amount of adsorbed solute in the matrix and in the fracture, respectively, kgm3
, b – width of 

fracture, m , t – time, s . 

 

Let in the left end of the fracture together with water the solute with concentration 0c
 
is injected. At the initial 

moment, both the fracture and the porous block were filled with pure water. After injecting from the point (0,0), the 

solute will spread along the fracture and through the fracture into the porous block. At the common boundary of the 

fracture and the porous block, the concentrations of the solute must be equal both from the side of the fracture and from 

the porous block, i.e., the continuity of the concentration is preserved. At an infinite distance along the fracture, i.e. 

x , the flow of solute is absent, which corresponds to the case when the concentration field is not spread to 

infinity. In fact, this assumption corresponds to those time intervals of the study, when the concentration front occupies 

the final region along the axis x , i.e. along the fracture. A similar condition is also adopted in the porous block at 

infinity along the axis y , i.e. when y
 
there is no flow of solute. 

 

Under the constraints formulated above, the initial and boundary conditions have the form 

    0,,0,0  yxcxc mf ,         (3) 

    00,0,0, ctctc mf  ,     0,,, xtcxtc mf  ,       (4) 

 
0

,,



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y

xtcm ,  
 

0
,






x

tc f
.          (5) 

 

With the use of such schematization several solute transport problem were considered in [11,21], but without taking 

into account adsorption and diffusion effects. 

 

The process of solute adsorption from an aqueous solution to the surface of a medium is assumed to be equilibrium. We 

use the following adsorption isotherms [22,23] 

kcs  ,   constk ,  - Henry isotherm; 
Nkcs  ,   const, Nk , - Freundlich isotherm; 

1

1 2

а c
s

a c



,   const, 21 aa , - Langmuir isotherm. 

 

In addition to the fields of concentration of solute с  and concentration of adsorbed solute s , the relative solute mass 

transfer was determined through the common boundary of the fracture and the porous block 
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III. NUMERICAL SOLUTION OF THE PROBLEM 

 

To solve the problem (1) - (5), we apply the finite difference method [24].  

 

In the domain    ,0,1 xxD  
 
and    yxyxD 0,0,,2  

we introduce the following net, 

 KTjiKkiihxx iih   ,...,1,0,,...1,0,,0...,2,1,0,, 11
, 

 ,...,1,0,...,,1,0,),( 2121
 jjhyiihxyx jijihh  

where 
21  , hh

 
steps of net by directions x  and y , respectively. With respect to time, we introduce a net 

 ,...1,0,,  kktt kk 
,   – step of net by time.  

 

Thus, equation (1) is approximated on the net
1h

  , and (2) – on the net 
21hh  . To approximate equation 

(1), we use an implicit "anti-flow" scheme, and for (2) – a purely implicit scheme or an advanced scheme. For the 

Henry isotherm, then the approximations of the equations have the form 
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Equations (6) and (7) are reduced to three-point net equations 
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where JI , – enough large integers, taken in such a way that the concentration and adsorption fronts do not reach the 

points  JII yxx ,, . 
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The initial and boundary conditions have the form 
0 0
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For solving equations (8), (9) we use Thomas algorithm (tridiagonal matrix algorithm). For this solution were present 
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For other adsorption laws, the adsorption field is determined from the corresponding dependences. In this case, the 
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Knowing the concentration fields it is possible to determine the mass transfer through the common boundary of fracture 

and the porous block 
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Relative summary mass transfer through the common boundary is defined as 
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The integrals (13), (14) were calculated numerically using the net values of the relative mass transfer 
1k

iQ . 

 

IV. RESULTS 

 

On the basis of the above numerical solution, calculations were carried out with the following initial data [11,21,22]: 
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Fig.3. Dependences of the current (a), at a fixed point (b), cumulative (c), total (d) mass transfer for different adsorption 

isotherms at smDm

26* 10  , smD f

23* 107  , smV 310  , 
3 35 10k m кg  , 3,0N , 

2 3

1 4,1 10a m кg  , 202 a . 

For some model parameters, different multivariant computations of the various solute transport parameters were carried 

out. 

Some results of calculations are shown in Fig. 2 and 3. As can be seen from the presented data, the concentration fields 

with increasing adsorption intensity have a limited distribution; the range of concentration changes is narrowed (Figure 

2). For the some other initial Both the values and the adsorption propagation region for the Langmuir isotherm are greater 

than for the Henry isotherm. In the case of Frendlich isotherm, this circumstance intensifies even more. Thus, if the 

maximum value of adsorption for the Henry isotherm at the point  0,0  was equal kgm36105,0  , then for the 

Langmuir and Frendlich isotherms these values are, respectively, 
6104,1   and kgm36105,2  . 

The adsorption fields also progress in the x and y  directions at the transition from the Henry isotherm to the Langmuir 

and Frendlich isotherms. An analysis is made for the case in which the diffusion coefficient in the fracture takes larger 

values. In this case, one can notice a progression of the concentration and adsorption fronts in comparison with the 

previous cases. 

 

The increase in the diffusion characteristics in the fracture thus affects not only the concentration field of the substance, 

but also the adsorption field. It should be noted that the quantitative characteristics of adsorption in this case practically 

do not change.  

 

In Fig. 3a are presented profiles of the relative current solute mass transfer through the common fracture boundary and 

the porous block for various adsorption isotherms. As can be seen from the figure, up to certain x distances, this is less 

for a linear isotherm then for the Langmuir and Frendlich isotherms. 

 

At fixed points, the growth of the relative mass transport is shown in Fig. 3b. Here, too, a previous pattern is observed 

for different adsorption isotherms. It can also be noted that, at points farther from the point of feed, the flow varies with 

the lag, without changing the regularity noted above. In Fig.3c and Fig.3d. the summary and total relative mass transfer 

across the common boundary of the fracture and porous block are presented. The summary mass transfer is 

characterized by the presence of a maximum, which is explained by a change in the concentration gradient at this 

boundary. This phenomenon is not observed for the total mass transfer. Apparently, the total relative mass transfer 

represents a time-integral characteristic, which smooths the non-monotonicity of the dependencies. 

 

V. CONCLUSION 

 

In the paper a mathematical model, describing solute transport in a fractured porous medium is presented. As an 

element of the fractured porous medium a medium consisting of single fracture and adjacent porous block is 

considered. Solute transport in the fracture is governed by convection, diffusion and solute mass transfer into the 

porous block, while in the porous block – only by diffusion. In both media equilibrium adsorption with different 

isotherms of solute can occur. The mathematical model is numerically solved. It was shown, that for all adsorption 

isotherms increasing of adsorption effects leads to the increasing of adsorption concentration characteristics. In turn, 

the propagation of the solute concentration field in the direction of motion decreases. 

 

As can be seen from the data obtained, the adsorption of the solute leads to a significant lag in the propagation of the 

solute concentration field. 

 

From the practical point of view adsorption of the chemicals at water flooding in oil reservoirs plays negative role 

decreasing the effectiveness of oil displacement process.   

 

The elementary schematization of the fractured porous media in the form of a single fracture and an adjacent porous 

block, used in this work, can provide qualitatively useful information that allows deeper understanding of the 

mechanisms of physicochemical flooding of oil reservoirs with fractured-porous rocks. 
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