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ABSTRACT: In this paper, controllability of a class of new composite fractional nonlinear dynamical systems is
investigated. Weaker sufficient conditions of controllability for the composite fractional nonlinear dynamical systems
are presented. A numerical example is also given to illustrate the main results.
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I. INTRODUCTION

Controllability is one of the most important properties in mathematical control theory, see [1]-[2]. It means that the
dynamical systems can be steered from an arbitrary initial state to an arbitrary final state within a limited time by
admissible control functions. Venkatesan Govindaraj et al. [1] consider the following composite fractional equation

X'(t) +a“Dx(t) + x(t) = f(t), x(0)=X,, 0<a <1, t>0.(11)
The fractional equation (1.1) with order o =1/2 corresponds to a basic problem in fluid dynamics called the Basset
problem. So in [1], the authors choose the order value of a=1/2, and the controllability conditions for linear and
nonlinear systems are obtained based on the assumptions that the linear systems is controllable. Recently, more and
more research is being done on the controllability of fractional dynamical systems by using Grammian matrix, iterative
technique and fixed point techniques, see for example, Venkatesan Govindaraj et al.[1], Krishnan Balachandran et
al.[2]. The controllability of fractional dynamical systems is one of the most important topics in many problems
because the use of fractional derivatives leads to better results that an integer one, see [3]-[6]. The research of the
controllability of various types of fractional systems is based on proving the existence of corresponding fractional
differential equations, see [3]-[10]. The main difficulty arising in the control problem for nonlinear fractional
dynamical systems is the lack of general methods. Venkatesan Govindaraj et al.[1] established sufficient conditions of
controllability of the following nonlinear fractional composite dynamical systems

X'(t) + K DY2x(t) + Ax(t) = Bu(t) + f (t,x(t)), teJ
X(0) =%,

Inspired by the above literature, in this paper, consider a more generalized form of a class of composite fractional
nonlinear dynamical systems

X'(t) + KEDY2x(t) + Ax(t) = Bu(t) + f (t, x(t),(Sx)(t)), te J, J =[0,T]
X(0) = x,

The controllability of nonlinear composite fractional dynamical systems (1.3) is established. The main goal of this

paper is to compute a control state that drives the system from a prescribed initial state to a described final state in a

limited time. The sufficient conditions of this paper is weaker than the previous work, and an numerical example is
provided to illustrate the main results.

(12)

(1.3)

Il. PRELIMINARIES

This section introduces definitions and preliminaries on fractional calculus. For more details, one can refer to the cited
literature and its references.

Definition 2.1 The Caputo fractional derivative of order & € Cwith n-l<a<n, neN, for a suitable function f is
defined as
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i 71x(") (s)ds (2.1)

D0 ==

Definition 2.2 Complex parametersa , € C, the Mittag—Leferr function is defined by

E,,(2)= ér(ak 5 2eC, a, >0 (2.2)
E..(2)=E,(2)= Zor(ak D zeC, a,>0 2.3)

For an arbitrary square matrix A, the Mittag-Leffler matrix function is

© k

E(Z,/,(A)=§:(;]r(ak T >0 (2.4)

Lemma 2.1 (see,[1])Linear composite fractional dynamical system
X'(t) + KDY 2x(t) + Ax(t) = Bu(t), te J, J =[0,T]
{X(O) =Xo
where K, AeR™, BeR™™, x(t)eR", and u(t) € L*(J,R™) . The solution of (2.5) is as defined as following

(2.5)

X(t) = (71 - 72) "1 (72V8) = 7,E1 (1) X,
+ (71 '72)71_";('[ _5)71/2[E1/2,1/2(71 Vi—s)— E1/2,1/2(72 Vt—s)]Bu(s)ds
“K +vK?—4A _K-K?*—44

where y, = > and y, = , K% —4A is positive so that the inverse of matrix y, and

¥, exists.
Definition 2.3 The system (2.5) is controllable on J if, for each vectors X,, X, € R", there exists a control function
u(t) e L>(J,R™) such that the solution (2.5) with initial state x(0) = x, satisfies X(T)=X,.

Lemma 2.2(see,[1]) The linear composite fractional system (2.5) is controllable on J iffGramianmatix
W = [T N(T -$)BB"N"(T —s)ds

is positive definite for T >0, where N(t) = (7, —7,) "[Ey/21/» (ylx/f) —E51,(72 Vo).

I11. MAIN RESULTS

Consider nonlinear fractional composite fractional dynamical systems described by the following nonlinear fractional
differential equations

X'(t) + KEDY2x(t) + Ax(t) = Bu(t) + f (t,x(t),(SX)(t)), te J
{X(O) = Xo

where K, AcR™, BeR™™, x(t)eR",and u(t) e L>(J,R™). f:JxR"xR" — R"is continuous functions.

Operator S is defined as following

(CRY)

(SX)(t) = [ h(t. $)x(s)ds , (3.2)
where h(t,s) e C(J xJ,R"),and hy =max,,,_,., h(t,s)>0.
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Let X ={x(t) eC(J,R") and “D"?x(t) e C(J,R")} be a Banach space endowed with the norm
I x|l=max,, | x(t)|+max,., |* D**x(¥)].

In order to obtain the main results, make the following conditions

(H1) There exists a positive M such that
| £t,x@),(Sx)@) <M, Vted, xeR"

(H2) For ¥ u, u,,v,,v, € R", there exist two continuous functions ¢(t) and w(t) on J such that
IF(ta.v) = £ .v0) I= @O | 1 = 11, |+ O vy = v || ted

Define ¢, =max,_, ¢(t), w, =max,_, y(?).
For simplicity, Let

1
”1=m%X||(T—f)zB*N*(T—t)W_1||
te
n, = max | (t_s)l/z[)ﬁEuz(Vz VE—=8)=7,E,(nVE=s)]|ll Bl

N (t,5)exJ
q=max ||(T=s)"*N(T -]

Theorem 3.1 Suppose that f satisfied conditions (H1) and (H2), and linear systems (2.5) is controllable, then the
nonlinear fractional composite fractional dynamical systems (3.1) is controllable on J .

Proof: Defined the following functions
Xo (1) = x,

%, (6)= (0= 7,) B N = 1 By DIy + [ (6 = )2 Nt = $){But, () + £ (5%, (5).(Sx, Xs)lds ~ (33)

u,(t)=(T -1)?B*N*(T -ty [yl - jOT(T — ) AN(T = 5) f(s,x, (s),(an)(s))ds] (3.4)
where y, =x;, —(), =7, )71[71E1/z (7 \/;) =1L, (Vl\/;)]xo .

It is clear that

lw, OIS —1)2 B* N *(T —)w || [l Wl I =) 2N =) £ (5,5, (5),(53),, () ds]
(T -02B* N*(T -0 ||| »,
(T =02 B* N*(T =W || [ (T =) "2 NT =)l (5,5, (5).(Sx, ()| ds
< n1||yl|| +n,gMT (3.5)
and

I, @) —u, @l

1
(T -6)2B* N*(T-t)W ™|

\ (11T =) AN = $) Il £ 5.3, (5).(5%,)5) — £ (5,%,4(5).(Sx, . )(s)) | s
<mg[ LT | /s, x,(5),(Sx,)(s)) = f(s,x,.1(5),(Sx, )(5)) || ds]

<mqTlp@®) || x, () = x,, () | +w(@) || (Sx,)O - (Sx, O[] (3.6)
since|| (Sx),, () = (Sx, )(O) [< Ao [!]| x,(5) =, 4 (s) || ds , itis easy to obtain that

Jot, (6= 1, ()] < mgTp(0) 1 x,(6) = x, () | +mg Ty OBy [ ] x, ()~ x, 4 (5) || ds
Then
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I[%,.: () —x, Ol
<=2 N =) B 21, () =, 5 (5) | + 1S (5%, (5):(S, () = £ (5., 1(5)- (S, 1 )(9)) [1ds
= [l Bl t1,(5) =10, 1 (5) |+ 1| £ (5., (), (S%,)(8)) = £ (5,2, 4 (). (8%, ) | ds
= [1q11 Bl u, ()=, 1 () | +qo(@) || x,(s) =%, 1 () | +qu(®) [| (S, )(5) = (S, 1 )(s) || ds
< [l Bl 4,5) ~ 1, 45) |+, | %,(5)— %, () | +aweho [l 5,0 —x, @ | de ks 3D
Because
ey (2) =g D I *t)%B* N*(T 0| [[OTH (T =) "2N(T =) Il £(5,2,(5), (Sx)3(5)) = /(5,20 (), (Sx6)(5)) | dS]

pS nlq[forll S (5,x,(5),(Sx,)(5)) — f (55 (5), (Sx,)($)) || s ]
<2nmgMT < LT, L >0(3.8)
and

125, =X @) 1< [ ¢ =)™ Nt =) [ Bl 1o () 1| + 1| £ (5,5 (5, (Sx0)(s) [[1ds

t
<[ qll Bl (m || y, || +1,gMT)+ M1ds
<qlll Bl n, || v, | +mgMT)+ MIT < L,T, L, >0 39)

By mathematical induction, we have

n+l n+l n+2

T
H-x,)|Lql| Bl L + 2+ qu h,—2— 3.10
Ix,.. ) -x,®Oll<qll B D P D Y (3.10)
n+2
Obviously, series Zq||B|| 1)' Zq% D and Zq‘P i, | R T are convergent. From weierstrass

discriminant method, Series {xn(t)} is convergent and uniformly convergent on J . So the following equation can be
regarded as the limit of (3.3) and (3.4), respectively.

X0) =0 = 72) B2 N = 12 s DIy + [[ (¢ =)™ N(t = $)[Bu(s) + f (5. x(5). (Sx)())]ds (3.11)
U(t) = (T —t)2 B*N*(T — )W -1[yl [T -9 N - 5)f (5, x(5), (Sx)(s))ds} (3.12)

Meanwhile, we get
C Dl/ZXn (t)

=7172 (71 - 72)-1[71E1/2(72\/f) _72E1/2(71‘\/f)]xo
+(0n-72) 7 [ €= 9) 21 E, (12 VT8) = 1,Eyy (VT 9)] X [BU, (8) + (5, %,5(5), (5%, )(s))]ds

and

I° D¥*x,(t) = D*x(1) |I<

iy J.; (t- S)_llz[ylEUZ (725) - 72E1/2(71‘\/:)]
x[B(U, (s) —u(s)) + (f (s, X, (s), (5%, )(s)) — (s, X(s), (SX)(s)))]dls|

<n,T [lu, @ =u@® [ +n,T | x, (1) = x(0) [ +n,Ty;hg I; I'x(s) - %, (s) || ds (3.13)

Then “D"?x, (t)—>“D"?x(t) ,n — o . SO (3.11) and (3.12) satisfies equation (3.1) and x(T)=x,, that is, Systems
(3.1) is controllable on J .
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IV. NUMERICAL EXAMPLE

In this section, we present an example to illustrate the main results obtained in section Ill. Consider the following
composite nonlinear fractional composite dynamical system

X! (t) +1 °D"x, (t) 3 X, (t) = sinx, (t) + r X, (s)ds + u(t)
2 16 0 1)
K05 D0+ D, (0 - 3,0~ %) = X0

N . x,(0) 1
withinitial conditions =| |, for t€[0]].
x,(0) 3

x, (¢
It is obviously that nonlinear fractional composite system (4.1) is one of special cases of (3.1), where x(¢) ={ i )} ,

x,(2)
1 _i 0 . t
K=|"7 9| 4= %6 1 !B:E] f= sinxy(0)+ [, (s)ds .
11 . X2 (t)
8 4 ?

After simple calculation, we can see that the Gramian matrix

—22.675577 19.478345
Since | W >0, linear fractional composite dynamical system (2.5) is controllable on [0,1]. The control which steers

. ‘s 26.703763 —22.675577
W=[ N1-5)BB'N'(L-s)ds =

1 2
the initial state x, = LJ to desired state x, = {5} in [0,1] is given by

u(t)=1-1)? BX*N*1-W™ [yl ~ (A=) NA-5)/(5.3(5), (Sx)(s))ds]

% 0 —% 0
where y, =x, — (3, — Vz)fl[ylEl/z(Vz\/;) _VzEl/z(Vl\/;)]xo' h= _1 E X _l _l
2 2 2 2
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