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ABSTRACT. In this article we investigated the stability of the finite difference schemes using Fourier transitions for
symmetric hyperbolic systems. Eigen values of symmetric matrices are used to check the stability [1]. In some
scientific articles, eigenvalues of application matrices for finite difference schemes are their stability is determined by
their unity in the circle. For hyperbolic systems, there are several finite difference schemes that have been studied for
their stability.
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ILINTRODUCTION

The Neyman method, which analyzes the stability of the finite difference schemes, is the most widely used
method. It is also possible to verify that the circuits are stabilized by applying the Fourier transitions [3]. We can write

symmetric hyperbolic systems as follows
ou D ou
e v 1)
k=1 9%k

here Ay are real constant NxN dimensional symmetric matrices, F are optional NxN size matrix. (1) as a result of
the approximation of the system, we have the following scheme:

uN o (A T)" @)

here L- is the multiplication that depends on the Ay matrix and the T slider operator.

1. APPLY FOURIER TRANSFORM FOR FINITE DIFFERENCE SCHEMES

e Detected for optional U € R

a(p) = ﬁ fe ' u(adx, u(x) = ﬁ fe " a(p)dp

e According to the mesh spacing h Vv=(..,V 5,V 4,V5,V;,Vp,V5...) for mesh function (here
é’e[—ﬂ/h'ﬂ/h])

_ —imhg h imhg
V() = xﬁ Ze Vin Vin \27[ ”I/he v(g)dg
|§kAxk
un_¢nekz,N

By using Fourier transform (2), a finite difference scheme
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1
¢"* =D(A, 7 " 3.
Here D — application matrices depend on the Fourier variables y, and A, matrices. Else ¢y =y 4, &\ =
boundary conditions for the (3) finite difference scheme then D — application matrices

dp d dy - diy
dnfl do dl .'. d2
D= dn_2 .'. -'. .'. d2
©dyy dy d
dl d2 d3 e do

is the circular matrix. D — circulant matrix has real eigenvalues numbers and it has a diagonalization feature. Thus, the
j2m

D —circulant matrix can be written as D = PAP_l, where Pm'n = N s the discrete Fourier transform

1.
N

matrix, and A — diagonal matrix is the eigenvalues numbers of D — circulant matrix

D(4) 0 0 - 0

0 D) o0 0

A=| 0 0

: 0 D(Z.,) O

0 o o0 - D)
Pg" = PD(A, 11 "
PEPP " =P 'D(A .7, )PP 'g" ).
If " = P71¢" is switched in the (4) finite difference scheme

A" = Apg" 5)

we will have a finite difference scheme. Here Ag, A pare diagonal matrices, composed from the eigenvalues of E —
unity and D — application matrices.

I11.  STUDYING THE CONDITION STABILITY OF THE FINITE DIFFERENCE SCHEMES

Remark. A isa N x N matrix with N eigenvalues 4, 4,,..., Ay obtained as solution of the polynomial

detA—E-1/=0
(here E —unity matrix, | = (ﬂl, Aoy A )T) its spectral radius is defined by the modulus of the largest eigenvalue
P(A) = Max(4|.
i=L,N

The Von Neumann necessary condition for stability can be stated as the condition that the spectral radius of the
amplification matrix satisfies {5 (Richtmyer and Morton, 1967)}

o(A) <1+ 0(At)
for finite At and for all values of ¢, in the range (—7, 7). This condition is less severe than the previous one, which

corresponds to a condition
p(A) <1. (6)
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According to the above conditions, if diagonal elements of A, A diagonal matrices are respectively Ag \ ,

Ap k » then (2) a finite difference scheme

j’D,k

E.k

max <1

is stable according to the conditions.
v. EXPERIMENTAL RESULT

If N =1 then (1) system is

o oox

We will use a mesh of equally spaced points (Xj,tn) where  Xpq — X =N, t,,y—t,=7 and 0<M<M ,

c’iu_A ou o

T .
0<n<N, A= b (courant number). We use the notation U/, = U(X,t,).

A

t
T

o
_——:—:—:—:
ol
g —

¥

h . 1 x

1

Figl: Grid according to parameters
Then write down the finite difference schemes for (7) system using the following template.

n+1,m
* T %
n,m—1 n,lm n,m+1
%
n—1,m

Fig2: Template appearance
Tablel. Finite difference schemes for system (7)

Ne

The name of the finite difference scheme Expression of the finite difference scheme
1 | forward time forward space Urrr]1+l —u" + M(UE] u" +1)
2 | forward time backward space = yn 4 M(ur?q " _1)
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3 forward time centered space ul oyl
upt =uf + A Ml Tm-l
2
4 backward time centered space —u"
u:q _ = Al m+1 m-1
2
5 | Lax-Wendroff V. Al n N
Up  =Uy— Az(um+1 - um—l)"'
/12
6 Lax-Friedrichs g 1 1. A/1 1 ~ A/1 "
" ol2 2 U * 2 T2)mt
7 Crank-Nicolson n+1 n+1 n
un+1 — Un + AL umtrl uerl + um+1 Un
m m
4
8 leap-f 1 -1
wop-fog R U U —UR
2 2
In the above Lax-Friedrichs schemes, we can perform fourier transforms
Vi = I My ()dg
\ —zlh
as a result
1 A 1 A
urt = =4 A +| Z-AZ b
m (2 2) m+1 (2 2) m-1
A
elmh§Vn+l(é/)dé/ e m+1)h§( + A]vn(é/)dé/ +
A 27T 71.-'./h xﬁ —x/h 2
1 zlh . _1 h
] ellmhe "(£)dg.
2 -rlh
We can simplify

V() = [(; + Ag)eih; +(;— A;je_ihgjvn ©)= G(hg)v” ©K)=---= G(hé’)nvO (&) will appear.

G”(h§)=(@+

Amplification matrix is

A
2

1
2

A

A
2

Ajeiha +(_

]

G"(h¢)=(I1cosh¢) —iALsin(he)).

Let us suppose A=TAT -1

. The amplification matrix is

&(ns)-

T(1cos¢) —iAAsin(he))' T

This is why ‘Gn(hg”)‘ and 1cos(he) —iAAsIn(hS) are bounded. Since |coshs)—iAAsIn(hS) is a

diagonal matrix, every element of it is bounded.
Since the elements of G(hé’) are composed of complex numbers, the scheme stability is as follows

G(ho)G"(he) <1
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(1cosh¢) —iAdsin(he) )1 coshe) +iAdsin(he))<1
(1coshe)f —(iadsin(he)) <1.

A isa diagonal matrix and its elements are the same as the eigenvalues of A matrix. In this case

F(¢) =cos(hg) —ia (A)Asin(h¢) ®)
(cosg)) —(iem (A)Asin(he)f <1

is inequality. Here @; (A) values are the eigenvalues of the matrix A.
As a result of the form substitution,
Amax(e; (A) <1 9)

1<i<N
a condition of stability.
In this way, we can define the conditions of stability as well as the remaining circuits.

Example 1. The following parameters can be entered in the MathCad system, in which case the stabilization
requirement is:

A max|e, (A) <1.
1<i<N
M=300 N:=50 i=y-1 1 1
M N
1 -1 4 1 100
o Ly
T h 6 A=1-4 1 1 E=|{010
1 1 -1 001
P are eigenvalius of matrix A.
P := eigenvals( A)
-4.662 pl = -4.662
P=1-0.468 p2 = —0.468
4.129 p3 = 4.129

(9) that the condition of stability is fulfilled in the equation

N-|p1] =0.777 - |p2| =0.078 - |p3| = 0.688

(8) the graphic representation of the expression
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Fl(u) = cos(u) —i- pl - & - sin(u) sin(u)
Im(F1(u))

F2(u) =cos(u) —i- p2 - & - sin(u) - 0 4__.
Im(F2(w) i
F3(u) = cos(u) —i- p3 - & - sin(u) Im(E3(n))

-05

coz(u) Re(F1(u)) Re(F2(u)) ,Re(F3(u))
Fig3: Location image in unity circle of F (<) expression.

For the Lax-Friedrichs finite difference scheme A max\a), (A)‘ <1 condition not fulfilled parameters to the MathCad
1<i<N

system.
Mi=100 N=50 =1 1 1

P = eigenvals(A)

~4.662 pl = ~4.662
P=|(-0.468 p2 == -0.468
4.129 p3 = 4.129

Mo |p1] 22331 N [p2] = 0234 N [p3| = 2.064

A max\a;, (A)‘ <1 stability condition can not be fulfilled. If we describe the expression in graphic form (8), then we
1<i<N
can say that the graph is out of unity circle. In this case, we see that the Lax-Friedrichs finite difference schemes is

unstable.
\ graph of the expression (8)

(=]

L= unity circle

sin (u)

mF1a) O 1
Im(F2(u))

In T2

-1 0 1
cos(u) ,Re(F1(u)), Re(F2(u) ) ,Re(F3(u))

Fig3: Location image out of unity circle of F (") expression.
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V. CONLLUSIONS

So we can see that it is enough and easier to test F (&) =cos(hd) —iaw (A)Asin(hg) the appeared when @; (A)

evangelius are put instead of A matrix rather than when testing eigenvalius of G(é’)z I cos(hg) —iAAsin(hS)

application matrix in the unity circle.
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