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ABSTRACT. In this article we investigated the stability of the finite difference schemes using Fourier transitions for 

symmetric hyperbolic systems. Eigen values of symmetric matrices are used to check the stability [1]. In some 

scientific articles, eigenvalues of application matrices for finite difference schemes  are their stability is determined by 

their unity in the circle. For hyperbolic systems, there are several finite difference schemes that have been studied for 

their stability.  
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I.INTRODUCTION 

 

The Neyman method, which analyzes the stability of the finite difference schemes, is the most widely used 

method. It is also possible to verify that the circuits are stabilized by applying the Fourier transitions [3]. We can write 

symmetric hyperbolic systems as follows 
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here kA are real constant NN  dimensional symmetric matrices, F  are optional NN  size matrix. (1) as a result of 

the approximation of the system, we have the following scheme:  

                        nuTkALnu ,1                     (2) 

here L  is the multiplication that depends on the kA matrix and the T  slider operator.  

 

II. APPLY FOURIER TRANSFORM FOR FINITE DIFFERENCE SCHEMES 
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By using Fourier transform (2), a finite difference scheme 
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n AD  ,1 
                    (3). 

Here D  application matrices depend on the Fourier variables k  and kA  matrices. Else 
n
N

n
11   ,  

nn
N 0   

boundary conditions for the (3) finite difference scheme then  D  application matrices 
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is the circular matrix. D circulant matrix has real eigenvalues numbers and it has a diagonalization feature. Thus, the 

D circulant matrix can be written as 
1 PPD , where N

n
mj

nm e
N

P
2

,

1
  is the discrete Fourier transform 

matrix, and   diagonal matrix is the eigenvalues numbers of D circulant matrix 
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If 
nn P  1


 is switched in the (4) finite difference scheme  
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we will have a finite difference scheme. Here E , D are diagonal matrices, composed from the eigenvalues of E

unity  and D  application matrices.  

 

III. STUDYING THE CONDITION STABILITY OF THE FINITE DIFFERENCE SCHEMES 

 

Remark.   is a NN   matrix with N  eigenvalues N ,,, 21   obtained as solution of the polynomial  

0det  IE  

(here E unity matrix,  TNI  ,,, 21  ) its spectral radius is defined by the modulus of the largest eigenvalue 

Ni

i

,1

Max)(


  . 

The Von Neumann necessary condition for stability can be stated as the condition that the spectral radius of the 

amplification matrix satisfies {5 (Richtmyer and Morton, 1967)}   

)(1)( to   

for finite t  and for all values of  , in the range ),(  . This condition is less severe than the previous one, which 

corresponds to a condition 

1)(  .    (6) 
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According to the above conditions, if diagonal elements of E , D  diagonal matrices are respectively kE , ,

kD, , then (2) a finite difference scheme 

1max
,

,
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kD




 

is stable according to the conditions.  

IV. EXPERIMENTAL RESULT 

If 1n  then  (1) system is   
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We will use a mesh of equally spaced points  nj tx ,  where  hxx mm 1 ,  nn tt 1  and Mm0 , 

Nn 0 , 
h


   (courant number). We use the notation ),( nm

n
m txuu  .  

 
Fig1: Grid according to parameters 

Then write down the  finite difference schemes for (7) system using the following template. 

 
Fig2: Template appearance 

Table1. Finite difference schemes for system (7) 

№  

The name of the finite difference scheme 

 

Expression of the finite difference scheme  

1 forward time forward space   n
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n
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1
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    
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3 forward time centered space          
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In the above Lax-Friedrichs schemes, we can perform fourier transforms 








 dvev
h

h

imh
m )(

2

1 /

/






, 

as a result 

n
m

n
m

n
m uAuAu 11

1

22

1

22

1























 

 

  .)(
22

1

2

1

)(
22

1

2

1
)(

2

1

/

/

1

/

/

11
/

/































dvAe

dvAedve

n
h

h

hmi

n
h

h

hmin
h

h

imh





 









 


















 

We can simplify 
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Amplification matrix is 

 
n

ihihn eAeAhG 
























   


22

1

22

1
 

   nn hiAhIhG )sin()cos(   . 

Let us suppose 
1 TTA . The amplification matrix is 

    1)sin()cos(  ThihIThG
nn  . 

This is why  hGn
 and )sin()cos(  hihI   are bounded. Since )sin()cos(  hihI   is a 

diagonal matrix, every element of it is bounded.   

Since the elements of  hG  are composed of complex numbers, the scheme stability is as follows 

    1*  hGhG  
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  is a diagonal matrix and its elements are the same as the eigenvalues of A  matrix. In this case  

                     )sin()()cos()(  hAihF i                (8) 

    1)sin()()cos(
22
  hAih i  

is inequality. Here )(Ai  values are the eigenvalues of the matrix A . 

As a result of the form substitution,  

                                  1)(max
1




Ai
Ni
                                (9) 

a condition of stability. 

In this way, we can define the conditions of stability as well as the remaining circuits.  

Example 1. The following parameters can be entered in the MathCad system, in which case the stabilization 

requirement is: 

1)(max
1


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Ai
Ni
 . 

 
P are eigenvalius of matrix A. 

 
(9) that the condition of stability is fulfilled in the equation 

 
(8) the graphic representation of the expression 
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Fig3: Location image in unity circle of )(F  expression.   

For the Lax-Friedrichs finite difference scheme 1)(max
1


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Ai
Ni
  condition not fulfilled parameters to the MathCad 

system.  

 

 

1)(max
1


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Ai
Ni
  stability condition can not be fulfilled. If we describe the expression in graphic form (8), then we 

can say that the graph is out of unity circle. In this case, we see that the Lax-Friedrichs finite difference schemes is 

unstable. 

 
Fig3: Location image out of  unity circle of )(F  expression.   
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V. CONLLUSIONS 

So we can see that it is enough and easier to test )sin()()cos()(  hAihF i  the appeared when )(Ai  

evangelius are put instead of A  matrix rather than when testing eigenvalius of   )sin()cos(  hiAhIG   

application matrix  in the unity circle.  
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