

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 5, Issue 5 , May 2018

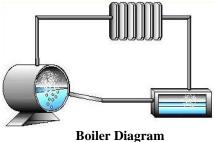
Design and Thermal Analysis of Steam Boiler (Without & With Baffles) Used in Small Power Plants

M. Sai Krishna, Dr. E. subbarao, Kiran Kumar*

M.Tech student, Department of Mechanical Engineering, Chalapathi Institute Of Technology. Guntur. AP. Professor& head, Mechanical Engineering, Chalapathi Institute Of Technology. Guntur. AP Assistant Professor, Department of Mechanical Engineering, KITS College, Vinjanampadu, Guntur, A.P.

ABSTRACT: Steam boiler is a closed vessel in which water or other fluid is heated under pressure and the steam released out by the boiler is used for various heating applications. The main considerations in the design of a boiler for a particular application are Thermal design and analysis, Design for manufacture, physical size and cost. In this thesis the steam flow in steam boiler (without baffles & with baffles) is modeled using CREO parametric design software. The thesis will focus on thermal and CFD analysis with different inlet velocities (20, 30, 40& 50m/s). In this thesis the CFD analysis to determine the heat transfer coefficient, heat transfer rate, mass flow rate, pressure drop. Thermal analysis to determine the temperature distribution, heat flux for both models steam boiler without baffles and steam boiler with baffles. Finding which model is best one.3D modeled in parametric software CREO and analysis done in ANSYS.

KEYWORDS: CFD, CREO, ANSYS,


I.INTRODUCTION

STEAM BOILER:

Steam boilers heat water to produce steam, which is then used to generate energy or heat for other processes.

A steam boiler is a closed vessel, generally made of steel, in which water is heated by some source of heat produced by combustion of fuel and ultimately to generate steam. The steam produced may be supplied at low pressure for industrial process work in cotton mills, sugar industries etc. and for producing hot water which can be used for heating installations at much low pressure. [1]

Logically a steam boiler should have a minimum capacity of containing 10 liters of water and its minimum working pressure should be 3.4 Kgf/cm2

Classification of Boiler :

Boilers can be classified in a number of ways, but the following are important from the subject point of view: 1. Horizontal, vertical and inclined boilers

- 2. Stationary, portable and marine boilers
- 3. Water tube and fire tube (shell tube) boilers

International Journal of Advanced Research in Science, Engineering and Technology

ISSN: 2350-0328

Vol. 5, Issue 5 , May 2018

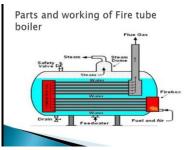
4. Single tube and multi tube boilers

- 5. Internally fired and externally fired boilers
- 6. Naturally circulated and forced circulated boilers
- 7. Source of heat (solid fuel, liquid and gaseous fuel, electrical and nuclear energy)
- 8. Low pressure, medium pressure and high pressure boilers
- 1) BOILER USED: FIRE TUBE (shell tube) BOILER:

2) EQUIPMENT DESIGN

There are three main types of steam boilers: Fire tube(shell tube), water tube, and cast iron.

In fire tube boilers, the combustion gases travel within the tubes to heat the surrounding water. In water tube boilers, on the other hand, the water travels inside the tubes and the heat on the outside, as shown above. Cast iron boilers are similar to water tube boilers, but the water is contained in cast iron sections instead of in tubes.


The diagram below shows the components of a fire tube boiler.

Fire Tube (shell tube) Boiler of package type boiler.

Working of boiler:

Both gas and oil fired boilers use controlled combustion of the fuel to heat water. The key boiler components involved in this process are the burner, combustion chamber, heat exchanger, and controls

The burner mixes the fuel and oxygen together and, with the assistance of an ignition device, provides a platform for combustion. This combustion takes place in the combustion chamber, and the heat that it generates is transferred to the water through the heat exchanger. Controls regulate the ignition, burner firing rate, fuel supply, air supply, exhaust draft, water temperature, steam pressure, and boiler pressure.

Hot water produced by a boiler is pumped through pipes and delivered to equipment throughout the building, which can include hot water coils in air handling units, service hot water heating equipment, and terminal units. Steam boilers produce steam that flows through pipes from areas of high pressure to areas of low pressure, unaided by an external

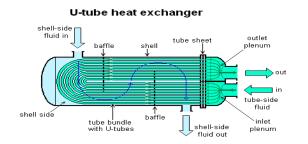
International Journal of Advanced Research in Science, Engineering and Technology

Vol. 5, Issue 5 , May 2018

energy source such as a pump. Steam utilized for heating can be directly utilized by steam using equipment or can provide heat through a heat exchanger that supplies hot water to the equipment.[2]

BAFFLES:

Baffles are flow-directing or obstructing vanes or panels used in some Industrial plants process.


Baffles are an integral part of the shell and tube heat exchanger design.

A baffle is designed to support tube bundles and direct the flow of fluid for maximum efficiency.

Baffles are used to increase the fluid velocity by diverting the flow across the tube bundle to obtain higher transfer coefficient. The distance between adjacent baffles is called baffle-spacing. The baffle spacing of 0.2 to 1 times of the inside shell diameter is commonly used. Baffles are held in positioned by means of baffle spacers. Closer baffle spacing gives greater transfer co-efficient by inducing higher turbulence. [3]The pressure drop is more with closer baffle spacing. In case of cut-segmental baffle, a segment (called baffle cut) is removed to form the baffle expressed as a percentage of the baffle diameter. Baffle cuts from 15 to 45% are normally used. A baffle cut of 20 to 25% provide a good heat-transfer with the reasonable pressure drop. The % cut for segmental baffle refers to the cut away height from its diameter.

TYPES OF BAFFLES:

- a). Cut-segmental baffle
- b). Disc and doughnut baffle
- c). Orifice baffle

II. LITERATURE SURVEY

Finite element Analysis of Steam Boiler Used In Power Plants A boiler or steam generator is a closed vessel used to generate steam by applying heat energy to water. During the process of generating steam, the steam boiler is subjected to huge thermal and structural loads[5]. To obtain efficient operation of the power plant, it is necessary to design a structure to withstand these thermal and structural loads. Using CAD and CAE software is the advanced methodology of designing these structures before constructing a prototype[4]. In this project finite element analysis of the steam boiler was carried out to validate the design for actual working conditions. The main tasks involved in the project are performing the 3D modeling of the boiler and finite element analysis[6]. In this project, design optimization of the Boiler is also done based on the results obtained from the thermal and structural analysis. CREO software is used for design and 3D modeling. ANSYS software is used for doing analysis

III. PROBLEM DESCRIPTION

The objective of this project is to make a 3D model of the steam boiler and study the CFD and thermal behavior of the steam boiler by performing the finite element analysis.3D modeling software (PRO-Engineer) was used for designing and analysis software (ANSYS) was used for CFD and thermal analysis.

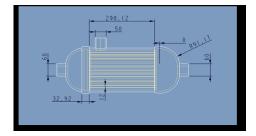
The methodology followed in the project is as follows:

- □ Create a 3D model of the steam Boiler assembly using parametric software CREO
- □ Convert the surface model into Para solid file and import the model into ANSYS to do analysis.

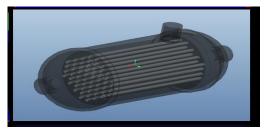
International Journal of Advanced Research in Science, Engineering and Technology

Vol. 5, Issue 5 , May 2018

 $\hfill\square$ Perform thermal analysis on the steam Boiler assembly for thermal loads.

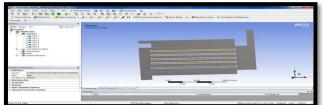

 \Box Perform CFD analysis on the existing model of the surface steam boiler for Velocity inlet to find out the mass flow rate, heat transfer rate, pressure drop.

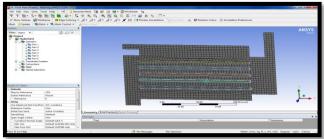
IV MODELING &ANALYSIS:


Models of steam boiler using CREO

The steam boiler is modeled using the given specifications and design formula from data book. The isometric view of steam boiler is shown in below figure. The steam boiler outer casing body profile is sketched in sketcher and then it is revolved up to 360° angle using revolve option and tubes are designed and assemble to in steam boiler using extrude option.

LINE DIAGRAM Steam boiler 2D diagram:

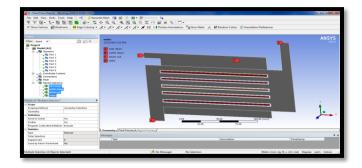

Steam boiler 3D diagram:


V.CFD ANALYSIS OF STEAM BOILER

VELOCITY – 20, 30, 40& 50m/s FLUID – STEAM

 \rightarrow Ansys \rightarrow workbench \rightarrow select analysis system \rightarrow fluid flow fluent \rightarrow double click \rightarrow Select geometry \rightarrow right click \rightarrow import geometry \rightarrow select browse \rightarrow open part \rightarrow ok

 \rightarrow select mesh on work bench \rightarrow right click \rightarrow edit \rightarrow select mesh on left side part tree \rightarrow right click \rightarrow generate mesh \rightarrow


The model is designed with the help of pro-e and then import on ANSYS for Meshing and analysis. The analysis by CFD is used in order to calculating pressure profile and temperature distribution. For meshing, the fluid ring is divided into two connected volumes. Then all thickness edges are meshed with 360 intervals. A tetrahedral structure mesh is used. So the total number of nodes and elements is 6576 and 3344.

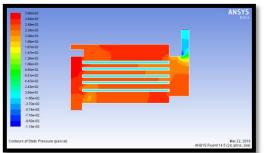
ISSN: 2350-0328 International Journal of Advanced Research in Science, Engineering and Technology

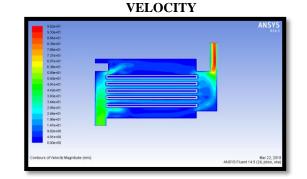
Vol. 5, Issue 5 , May 2018

Select faces \rightarrow right click \rightarrow create named section \rightarrow enter name \rightarrow water inlet Select faces \rightarrow right click \rightarrow create named section \rightarrow enter name \rightarrow water outlet

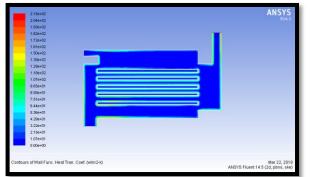
Model \rightarrow energy equation \rightarrow on. Viscous \rightarrow edit \rightarrow k- epsilon Enhanced Wall Treatment \rightarrow ok

Materials \rightarrow new \rightarrow create or edit \rightarrow specify fluid material or specify properties \rightarrow ok Select air and water


Boundary conditions \rightarrow select water inlet \rightarrow Edit \rightarrow Enter Water Flow Rate $\rightarrow 2Kg/s$ and Inlet Temperature -353KSolution \rightarrow Solution Initialization \rightarrow Hybrid Initialization \rightarrow done


Run calculations \rightarrow no of iterations = 50 \rightarrow calculate \rightarrow calculation complete

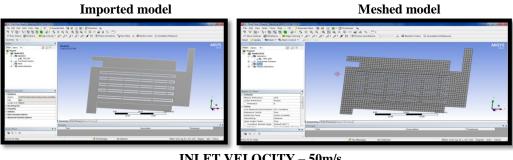
 $\rightarrow \rightarrow$ Results \rightarrow graphics and animations \rightarrow contours \rightarrow setup


VELOCITY – 50m/s

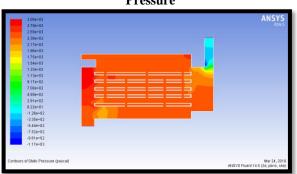
HEAT TRANSFER CO-EFFICIENT

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 5, Issue 5 , May 2018


MASS FLOW RATE

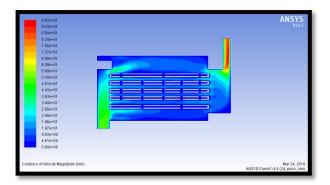
Mass Flow Rate	(kg/s)
inlet_steam	0.55886209
interior-part_1	-7.5209637
interior-part_1-water	-0.0065074284
interior-water	-4.238658
outlet_steam	-0.56094575
steam out	0
wall-part 1	9
wall-water	0
Net	-0.0020836592


HEAT TRANSFER RATE

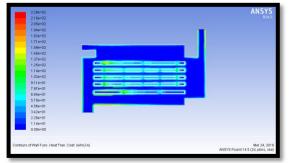
Total Heat Transfer Rate	(w)
inlet steam	78543.602
outlet steam	-78658.797
steam out	0
wall-part 1	0
wall-water	0
Net	-115.19531

CFD ANALYSIS OF STEAM BOILER WITH BAFFLES

INLET VELOCITY – 50m/s Pressure



Velocity



International Journal of Advanced Research in Science, Engineering and Technology

Vol. 5, Issue 5 , May 2018

Heat transfer coefficient

Mass flow rate

Mass Flow Rate	(kg/s)
inlet	0.55886209
interior- trm srf	-0.89335215
outlet	-0.56423342
steam out	0
walltrm_srf	0
Net	-0.0053713322

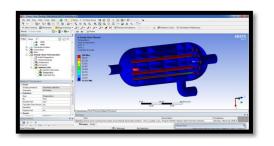
Heat transfer rate

(w)	Total Heat Transfer Rate
78543.602 -79298.641 0 0	inlet outlet steam_out walltrm_srf
-755.03906	Net

VI. THERMAL ANALYSIS:

THERMAL ANALYSIS OF STEAM BOILER

Open work bench 14.5>select **steady state thermal** in analysis systems>select geometry>right click on the geometry>import geometry>select **IGES** file>open

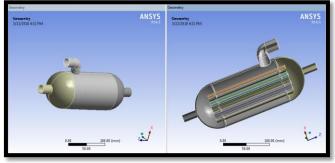


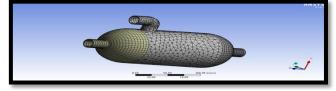
International Journal of Advanced Research in Science, Engineering and Technology

Vol. 5, Issue 5 , May 2018

Used Materials steel, copper, brass & stainless steel					
Copper material for tube					
Steel, brass & stainless	steel for	r boiler casing			
Copper materi	ial prop	erties			
Thermal conductivity =	385w/	/m-k			
Specific heat	=	0.385j/g ⁰ C			
Density					
Steel materia	l prope	rties			
Thermal conductivity	=	93.0w/m-k			
Specific heat	=	0.669j/g ⁰ C			
Density	=	0.0000075kg/mm ³			
Stainless Steel ma	terial p	roperties			
Thermal conductivity = 34.3w/m-k					
Specific heat	=	0.620j/g ⁰ C			
Density	=	0.00000901kg/mm ³			
Brass material properties					
Thermal conductivity	=	233w/m-k			
Specific heat	=	0.380j/g ⁰ C			
Density	=	= 0.0000760kg/mm ³			

THERMAL ANALYSIS OF STEAM BOILER WITH BAFFLES




HEAT FLUX

TEMPERATURE DISTRIBUTION

VII. IMPORTED MODEL

MESHED MODEL

International Journal of Advanced Research in Science, Engineering and Technology

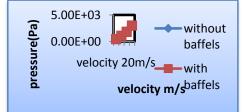
Vol. 5, Issue 5 , May 2018

FEA representing a real project as a "mesh" a series of small, regularly shaped tetrahedron connected elements, as shown in the above fig. And then setting up and solving huge arrays of simultaneous equations. The finer is the mesh, the more accurate the results, but more computing power is required.

VIII. RESULTS AND DISCUSSIONS

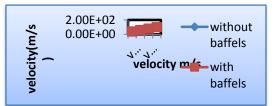
Without baffles	Temperature(⁰ C) Max.		100
	Min.		15.711
	Heat flux(w/mm ²)		159.67
With baffles	Temperature(⁰ C) Max.		100
		Min.	15.552
	Heat flux(w/mm ²)		160.09

CFD ANALYSIS RESULT TABLE Steam boiler without baffles


Steam boner without barries					
Velocit	Pressure(Pa	Velocity	Heat transfer	Mass flow rate	Heat transfer
y (m/s))	(m/s)	co-efficient (w/m ² -k)	(kg/s)	Rate(W)
20	4.75e+02	3.93e+01	1.13e+02	0.0024522692	372.9043
30	1.07e+03	5.89e+01	1.50e+02	0.0021263063	157.38672
40	1.86e+03	7.90e+01	1.84e+02	0.0037876368	379.625
50	2.90e+03	9.82e+01	2.15e+02	0.0020856592	115.19531

Steam boiler with baffles

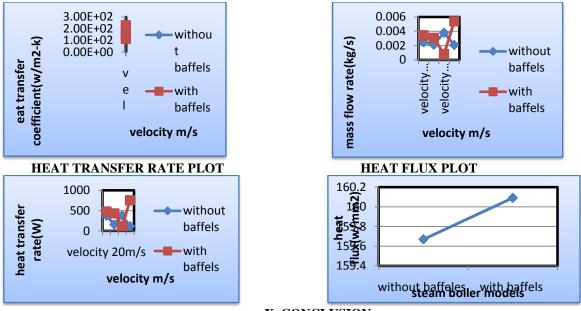
Velocit y (m/s)	Pressure(Pa)	Velocity (m/s)	Heat transfer co-efficient (w/m ² -k)	Mass flow rate (kg/s)	Heat transfer Rate(W)
20	4.53e+02	3.86e+01	1.12e+02	0.0034194887	480.56836
30	1.08e+03	5.87e+01	1.47e+02	0.0030812621	433.06641
40	1.82e+03	7.80e+01	1.80e+02	0.00080680847	113.41797
50	3.00e+03	9.82e+01	2.28e+02	0.00537133	755.03906


THERMAL ANALYSIS RESULT TABLE IX.GRAPHS:

PRESSURE PLOT

HEAT TRANSFER COEFFICIENT PLOT

VELOCITY PLOT



MASS FLOW RATE PLOT

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 5, Issue 5 , May 2018

X CONCLUSION

In this thesis the steam flow in steam boiler (without baffles & with baffles) is modeled using CREO parametric design software. The thesis will focus on thermal and CFD analysis with different inlet velocities (20, 30, 40& 50m/s). in this thesis the CFD analysis to determine the heat transfer coefficient, heat transfer rate, mass flow rate, pressure drop. Thermal analysis to determine the temperature distribution, heat flux for models of steam boiler without baffles and steam boiler with baffles. Observing the thermal analysis, the taken different heat transfer coefficient values are from CFD analysis. Heat flux value is more for steam boiler with baffles. So we can conclude the steam boiler with baffles model is better model.

REFERENCES

- 1. Design and Thermal Analysis of Steam Boiler used in Power Plants V. Ashok Kumar1, G. Kumar 2, K. Pavan Kumar 3, Mother Theressa College of Engg& Tech. Peddapalli, Telangana.
- 2. Finite Element Analysis of Steam Boiler Used In Power Plants 1M. SuriBabu, 2 Dr.B.Subbaratnam 1M.Tech student, 2Professor, Dept of Mechanical Engineering, Kits, Markapur, A.P. India.
- 3. Structural and thermal analysis of a boiler using finite element Analysis
- 4. D.Kondayya Department of Mechanical Engineering, Author Correspondence: Department of Mechanical Engineering, SIST, Ghatkesar, Hyderabad 501301.
- 5. Analysis of New Boiler Technologies Dr Mike Inkson
- 6. 5.A Study Analysis and Performance of High Pressure Boilers With its Accessories J. Suresh babu1,R.Latha2, B.Praveen3,V.Anil kumar4,R Rama kumar5,s.peerulla6 1 Assistant Professor in MED, K.S.R.M College of engineering, AP, India 2 3 4 5 6 Student, mechanical department, K.S.R.M College of engineering, AP, India
- 7. Design and analysis of the prototype of boiler for steam pressure control 1Akanksha Bhoursae, 2 Jalpa Shah, 3Nishith Bhatt Institute of Technology, Nirma University, SG highway, Ahmedabad-382481, India 3Essar steels limited, Hazira, Surat-394270, and India
- 8. Lou Roussinos, P. E., "Boiler Design and Efficiency" [online], Available: <u>http://www.forestprod.org/drying06williamson.pdf</u>, Accessed: September 1, 2010.
- 9. Murdock, K. L., "3ds max 9 Bible, Wiley Publishing Inc. Indianapolis, Indiana, 2007.
- 10. Nag pal, G. R., 1998, Power Plant Engineering, Khanna, Delhi.
- 11. Steam Pressure Reduction: Opportunities and Issues by U.S Deportment of energy,
- 12. .Rapid Start up Analysis of a Natural Circulation HRSG Boiler with a Vertical Steam Separator Design by M.J. Albrecht, W.A. Arnold, R. Jain and J.G. DeVitto,
- 13. Technological investigations and efficiency analysis of a steam heat exchange condenser:
- 14. Conceptual design of a hybrid steam condenser by R K Kapooria and S kumar,
- 15. Developmental design of a laboratory fire tube
- 16. Steam boiler by I. O. OHIJEAGBON,