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ABSTRACT: Regularized algorithms for the formation of control actions in locally optimal control systems for 

dynamic objects are given. Given that the initial equations for estimating the parameters of the object and the control 

device are usually poorly conditioned, it becomes necessary to apply regular methods. Stable algorithms for finding the 

desired solutions are presented on the basis of regular nonorthogonal factorizations and pseudo-inversions of square 

matrices that contribute to an increase in the accuracy of the formation of control actions. Regularized algorithms for 

the formation of control actions in locally optimal control systems for dynamic objects are given. Given that the initial 

equations for estimating the parameters of the object and the control device are usually poorly conditioned, it becomes 

necessary to apply regular methods. Stable algorithms for finding the desired solutions are presented on the basis of 

regular nonorthogonal factorizations and pseudo-inversions of square matrices that contribute to an increase in the 

accuracy of the formation of control actions. 
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I.INTRODUCTION 

 

The main problem of parametric optimization consists in determining the parameters of the control algorithm from the 

condition of minimizing the chosen quality criterion [1-5]. Complex and time-consuming is the solution of the problem 

of parametric optimization for multimode objects or objects with slowly varying parameters when the rate of change of 

the parameters of the object is small and on the optimization interval they can be considered constant. The problem of 

parametric optimization can be reconciled with the general problem of synthesis of an adaptive control system [2,4,6]. 

In this case, both theoretical methods and numerical procedures are used to solve the problem of parametric 

optimization. 

 

In the theoretical approach, adaptive control algorithms are defined, in which the parameters are functions of the 

coefficients of the mathematical model of the control object or depend on their specific relationships [4-7]. 

When using the second approach to the solution of the problem of parametric optimization, the control algorithm is 

known, and by modeling, the necessary ranges of the parameters of the control algorithm are determined, and on the 

basis of these results, functions for the adjustment of the parameters of the control algorithm are constructed. However, 

only a suboptimal solution can be obtained here [6-8]. 

 

Recursion algorithms [9-11] are most often used to estimate the coefficients of equations from observable data, 

allowing identification in the normal operation mode of the object. The control of the object leads to the degeneration 

of the information matrix and thereby prevents the identification of the object or the required optimal control law, 

determined by the identifiable parameters of the object. 

 

There are various approaches to solving this problem. To prevent unidentifiability, various methods were proposed 

[7,10]: the addition of noise to the controller, the inclusion of several controllers in the control system and their 

connection by some algorithm, and others. 

 

In [7,12] the general form of control as a function of unknown parameters of a linear object is given, for which the 

problem of identifiability is removed in the sense that the nonidentifiability of the parameters of the object does not 
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entail the unidentifiability of the required control. It is shown [7] that locally optimal control belongs to this species. In 

this connection, the identifiability of the optimal control law takes place in locally optimal control systems. 

 
II. FORMULATION OF THE PROBLEM 

 

Very often, when synthesizing a regulator in closed systems, methods of locally optimal adaptive control are used 

[5,8,12,13]. Consider a linear control object described by equation  

11   tttt wBuAxx ,      (1) 

where
n

t Rx   – is the measured state, }{ tw  – is uncontrolled independent random perturbations satisfying condition  

QwEwEw T
ttt  ,0 , 

A and B  are unknown matrices of dimension nn  and mn . 

We take the control law in the form  

tt
T

t xu )( , 

where )(  is the given matrix function, and t  is the current estimate of the matrix  BAT  , obtained from the 

relations  

11   tt
T

t w , 

where   is an unknown matrix of dimension nn  ; 
n

t R  and 
n

t R  are the vectors available to the 

measurement. 

We define the sequence of estimations of matrices   according to the method of least squares on the basis of the 

recurrence relation [12]:  

 Tt
T
tttttt  


 1
1
11  , 

where 0  is an arbitrary matrix of dimension nn  , and the matrix 1t  has the form  

0, 01  
T
tttt ,    11,,   tt

T
t

T
t

T
t xux  . 

 

Then the limiting law of control will be determined by the expression [7,9]  

t
T

t xBAu ),( ,  )()(),( 1 ASHBHBA TTTT   .    (2) 

The control law (2) minimizes the conditional mathematical expectation of the value along the trajectory (1) of the 

objective function  

)()()( 11111

  tt

T
ttt xxCxxxV , 

while the nonnegative definite matrix TCC   satisfies the equality CBH  , and 


1tx  – is the state value of the 

reference trajectory determined by equation t
T

t xSx 


1 , and at 0S  control (2) will coincide with locally optimal 

control. 

Also consider the control object specified in the form  

1
1

1
1 )()( 




  ttt wuzByzA ,      (3) 

where
l

t Ry   - measured outputs, 
m

t Ru   - control. 

We introduce the following notation  

),...,,...,,( )0()1()1()( BBAA nnT  , 

)...,,,...,,( 11
T
t

T
nt

T
t

T
nt

T
t uuyy  , 

where 11   tt y . 

Then, taking into account that  

)...,,,...,,(,)( 11
T
t

T
nt

T
t

T
nt

T
ttt

T
t uuyyu   , 

the locally optimal control law takes the form:  
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     (4) 

where niS i
,1,

)(
  and 1,1,)(  njD j

 are arbitrary matrices of dimension ll   and ml  respectively, H  –  is the 

matrix lm  such that 0det )0( BHT . 

 
III. SOLUTION OF THE TASK 

 
Thus, for objects described by equations (1) and (3), a locally-optimal control law is formed on the basis of expressions 

(2) and (4), respectively. In the expressions (2) and (4), square matrices of the form BHG T  and )0()0( BHG T  are 

inverted. The matrix data can be poorly conditioned, which ultimately leads to the necessity of constructing regular 

algorithms for the formation of the required estimates. 

 

In addition, in practical problems often elements, for example, of the matrix G  are known to us approximately. In these 

cases, instead of the matrix G , we are dealing with some other matrix G
~

 such that hGG 
~

, where the meaning of 

the norms is usually determined by the nature of the problem. Having matrix G  instead of matrix G
~

, we can not, 

moreover, express a definite proposition on the degeneracy or nondegeneracy of the matrix G . Instead of such matrices, 

G
~

 is infinitely large, and within the bounds of the known level of error they are indistinguishable. But there are 

infinitely many such matrices, and in the framework of the known error level they are indistinguishable. Among such 

"possible exact systems" there may be degenerate ones. 

 

To give numerical stability to the procedure for inversion of matrices G and )0(G , it is advisable to use the concepts of 

regular and stable estimation methods [14-16]. Below we present an algorithm for estimating the inverse matrix 1G  in 

equation (2). The same algorithm can also be used to estimate the matrix 
1)0( 

G  in equation (4). 

 

Suppose that the matrix njigG ij ...,,2,1,],[   is nondegenerate. Denote by kG  its left upper part, i.e. 

kjigG ijk ...,,2,1,],[  . Matrices nkGk ...,,2,1,  , nondegenerate. Imagine them in the form  
















)(
22

)(
21

)(
12

)1(
11)(

kk

kk
k

GG

GG
G , 0,0,,1 )1(

21
)1(

1211
)1(

22
)1(

11  GGgGGk . 

 

Following [17,18] of the method of bordering, the inverse matrix can be written in the following form  

 
















)()(

)()1(
1)(

kk

kk
k

VN

RP
G . 

Then 

 
1

)(
12

1)1(
11

)(
21

)(
22

)(









  kkkkk GGGGV , 

  )(
12

1)1(
11

)()( kkkk GGVR


 ,   1)1(
11

)(
21

)()(  kkkk GGVN ,              (5)  

      1)1(
11

)(
21

)(
12

1)1(
11

)(1)1(
11

)1(   kkkkkkk GGGGVGP . 

Carrying out the calculations using formulas (5) at nk ,...,3,2 , one can obtain 11  GGn . 

 

In the case under consideration, it is advisable to use the Gauss method [17, 19-21] for matrix inversion, according to 

which a sequence of matrices GGkG k  )0()( ...,,1,0, is constructed, in the form  
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
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Where )(
11

kG  is an invertible matrix of size kk . 

To do this, the leading s -nd element  

)(

,

)( max k
ij

mjknik

k
s gg


 , 

is searched for the existing cell )(
22

kG  at the k-th step, where 
)(k

ijg  is the ij-th element of the matrix )(kG . 

 

If  )(k
sg , then the permutation of the  -nd row and the s-rd column with the )1( k -th row and the column of the 

matrix )(kG  is done. Then the matrix )1( kG is recalculated after the permutations  


















)()(

)()(
1,1)(

22 kk
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kkk

W
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
, 




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
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
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





















)1(
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)()(
1,1)(

21
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12
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)1(
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G
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G
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, 

where )()()()1(
22

kkkk dWG  ,   )(1)(
1,1

)( kk
kk

k g 


 . 

 

If  )(k
sg , then the factorization process stops and the non-orthogonal factorization of the matrix G  in the form  

kk RUG  ,  TTT
k UUU 21  , 

 21 RRRk  , )(
212
kGU  , 



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,
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k
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g
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






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



 

is determined. 

 

The approximation for the pseudoinverse matrix is thus constructed [17,21]:  
  kk URG .       (6) 

 

The calculation of 
R  and 

U  in (6), when R and 
TU  are respectively upper-peptide matrices, is efficiently 

performed by orthogonal factorization SPR  using the Givens or Householder transformations [18,20], where S – is 

the lower-triangular square, P – orthogonal matrix. Then
1  SPR T

. 

 

IV. CONCLUSION 

 

The resulted regularized algorithms allow to stabilize the procedure of formation and development of control actions in 

locally optimal control systems for dynamic objects under conditions of poor conditionality of matrices G and )0(G . 
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