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ABSTRACT: Under assumptions of fluid movements and flexible beam vibrations, considering the damping and axial 

elongation of the flexible beam, coupling nonlinear dynamic controlling equations are established for a liquid-solid 

system, a flexible cantilever opening beam with interior inlay fluid. In the case of free vibrations without excitations, 

according to the Hopf bifurcation’s requirements for the characteristic polynomial’s roots of the Jacobi coefficient 

matrix of perturbation equations, algebraic expressions, which the critical flow velocity must satisfy, are derived using 

relative algebraic criterions of Hopf bifurcations. In the case of forced vibrations with low fixed frequency sinusoidal 

excitations, the classical 4th- order Runge-Kutta method is utilized to solve state-space equations, and results show that 

when the flow velocity exceeds the critical velocity, the amplitude of beam’s vibration response jumps. 
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I. INTRODUCTION 

 

In the field of practical project, there often are some typical liquid-solid coupling structures/systems with interior inlay 

fluid, such as pipeline structure, including oil and natural gas pipeline, and laminated panels cooling system of nuclear 

reactor and so on. The research on stability and vibration response characteristics is very significant to the designing of 

the typical structures. Paidoussis M. P.[1] studied the dynamic stability of air extraction pipe. He found the pipeline 

could not be vibration instability under the action of infinitely small fluid, which was also verified by corresponding 

experiments. Holmes[2], Bajaj[3] et al. studied the stability of fluid-conveying pipeline under different supporting 

conditions and proved the presence of post-instability phenomenon. Guo C.Q. et al. [4] investigated the vibration 

problem of laminated rectangular panels inducted by fluid. There is still have many similar investigations but details 

not listed here. In this paper, a flexible cantilever opening beam, with interior inlay fluid in axial channel, was 

investigated. Coupling dynamic controlling equations were established on certain assumptions.  

In the case of free vibrations without excitations, according to the Hopf bifurcation theory and relative algebraic 

criterions, Hopf bifurcation critical flow velocity can be obtained. The classical 4th-order Runge-Kutta method is 

utilized to solve state-space equations, and results show that when the flow velocity exceeds the critical velocity, the 

amplitude of beam’s vibration response jumps.  

 

II. COUPLING VIBRATION CONTROLLING EQUATIONS 

 

Consider a flexible cantilever opening beam with interior inlay fluid. The fluid flows along the axial channel in a 

constant flow velocity of Fv , with low fixed frequency sinusoidal excitations in the free end of the beam. Main 

characteristic parameters of the system are listed in Table 1. Following assumptions are taken for the system: (i) The 

flexible beam only can vibrate in y  direction. (ii) During the vibration, at the same time, the height of flow channel ( y

direction) is constant along the length of the beam ( x direction). (iii) The fluid is ideal fluid, inviscid and 

incompressible, and has constant flow velocity of Fv . Based on above assumptions, the liquid-solid coupling vibration 

controlling equation is following [4] .  

 

 

4 2 2 2
2 4

4 2 2 2

2 2 2
2

F F2 2

3
2 ( ) ( )

4

( 2 ) ( ) sin( )

y

yc

w w w w w w w
EI c A EA EA

t x xx t x x

w w w
M v v x L F t

t xt x



 

      
   

     

  
    

  

 (1) 

http://www.ijarset.com/
http://dict.cnki.net/dict_result.aspx?searchword=%e6%8a%bd%e6%b0%94%e7%ae%a1%e9%81%93&tjType=sentence&style=&t=air+extraction+pipe


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 5, Issue 5 , May 2018 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        5770 

 

 

 

where 
yEI is y direction flexural rigidity of the beam. ( , )w x t  is y direction vibration displacement. A is Cross section 

area of the beam. 
c F FM A  (

F  is the fluid density and
FA  is the cross section area of the flow channel) is the fluid 

added mass. L is length of the beam. For more conveniently analyzing formula (1), the following dimensionless 

quantity is introduced: /W w L , /X x L , 2 /L A I  , / ( )c cM M A   , 0.5 2( ) / [ ( )]cT EI t L M A  , 2 / ( )C cL EI Mc A  ,
F/ ( )V Mc EI v L , 

3 / ( )F FL EI , 2 ( ) / ( )cL M A EI    . Substituting above dimensionless quantity into formula (1), dimensionless 

coupling vibration controlling equations of system can be obtained as followed. 
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According to the constraint conditions of the beam, assuming experimental mode function ( )i X  as main vibration 

mode of empty beam. 
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Let ( )i T  be corresponding modal coordinates, and then ( , )W X T  can be expressed as: 
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For approximate calculation, truncating higher order modes than 2, substituting formula (4) into formula (2), using 

modal orthogonality, multiplying ( )j X  on the both sides of the formula and omitting higher order modes than 3, then 

integrating the formula in . 
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where 
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Let 
11q  ，

12q 


 ，
23q  ,

24q 


 , and then the state equation of the system is following. 
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III. DYNAMIC HOPF BIFURCATION UNDER FREE VIBRATION OF SYSTEM 

 

For some pipeline or interlayer structures, under the condition of free vibrations without excitations, the whole system 

would be vibration instability when flow velocity of the interior fluid exceeds a certain value, which indicates the 

occurrence of dynamic Hopf bifurcation. At this time, topological structure of system phase diagram changes, and 

stable limit cycles appear around the fixed point. According to bifurcation theory, an important item must be met when 

dynamic Hoph bifurcation taking place, that is, there must be a pair of pure characteristic roots of the Jacobi coefficient 

matrix of perturbation equations. For our system, truncating excitation items in the right side of formula (8), the free 

vibration state equation can be obtained, furthermore, linearization perturbation equation of system can be obtained as  
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From formula (9), the characteristic polynomial of the Jacobi coefficient matrix A can be obtained as  
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It is very difficult to validate whether formula (9) have a pair of pure characteristic roots by the method of solving 

characteristic roots. Reference 8 gave the following theorem to judge the real coefficient characteristic polynomial’s 

roots condition. For the following real coefficient polynomial 
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There are a pair of pure imaginary roots, and the necessary and sufficient conditions of other characteristic roots having 

 negative real parts are: (i) 0ia  （ 1,2,3 ,i n ）;  (ii) 0i  （ 3, 5,i n n   ）, 
1 0n  , where 

i  is Hurwitz 

determinant of polynomial. According to above theorem, it can be obtained through calculation that, when the dynamic 

 Hopf bifurcation occurs, the critical flow velocity of interior fluid in axial channel must meet the following formulas:  
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Substituting parameters into the dimensionless formula, obtaining 0.4  ， 510  ， 0.08C  , which were substituted 

into the formula (11), and then the critical flow velocity of dynamic Hopf bifurcation can be obtained:
div-dy 7.3825V   . The 

classical 4
th

-order Runge-Kutta method is utilized to solve state-space equations in the condition of free vibrations 

without without excitations. 

 

IV. VIBRATION RESPONSE CHARACTERISTIC  

 

In the case of forced vibrations with low fixed frequency sinusoidal excitations, the classical 4
th

- order Runge-Kutta 

method is utilized to solve state-space equations (8), and the response amplitude change law in trans-critical flow 
div-dyV  

is investigated. Excitation amplitude F is selected according to the principle of response amplitude is not exceed
21 10 m , and here, Appointed it as 0.01F  .  

 

 

Fig.1 The time-domain curve and phase diagram of the flexible beam when div-dyV V  (V=7.24, f=1.9) 

 

 

Fig.2 The time-domain curve and phase diagram of the flexible beam when div-dyV V (V=7.44, f=0.5) 
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Fig.3 The effect of flow velocity on vibration response amplitude 

( A is dimensionless vibration response amplitude of beam free end, V is dimensionless velocity) 

 

When
div-dyV V , the vibration response of flexible beam is as Fig.1 showed. When

div-dyV V , with the change of 

difference between exciting frequency and vibration frequency of unperturbed vibration instability, vibration response 

characteristic is also different. When the difference is great, vibration response have beat frequency (Fig.2). Analysis 

result map (Fig.3) shows that, pre and post div-dyV , vibration response amplitude A  has a clear jump. Obviously, the jump 

is resulted in vibration of vibration instability, but the inherent mechanism needs a further investigation.  

 

V. CONCLUSION 

 
For a liquid-solid system, a flexible cantilever opening beam with interior inlay fluid, under assumptions of fluid 

movements and flexible beam vibrations, coupling nonlinear dynamic controlling equations are established by 

considering the damping and axial elongation of the flexible beam. In the case of free vibrations without excitations, 

the Jacobi coefficient matrix characteristic polynomial of perturbation equations are analyzed according to the Hopf 

bifurcation theory and relative algebraic criterions of real coefficient characteristic polynomial’s roots, dynamic Hopf 

bifurcation critical flow velocity div-dyV  was obtained. It was proved that the free vibration system would be vibration 

instability when the flow velocity of fluid exceeded critical flow velocity. The classical 4
th

- order Runge-Kutta method 

is utilized to solve the vibration response when the system is under low frequency sinusoidal excitations, and results 

showed that when the difference between exciting frequency and vibration frequency of unperturbed vibration 

instability was great, vibration response had beat frequency. Whereas, when the difference is not so great, beat 

frequency disappeared. In the latter condition, corresponding analysis results showed that vibration response amplitude

A  had a clear jump when the flow velocity crossed the critical flow velocity div-dyV . 
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