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ABSTRACT: In the paper on the basis of conservation laws suspensions filtration equations with forming a relaxing 

cake layer are derived. The equations are numerically solved. To solve the equation for cake layer growth a Stefan’s 

problem is posed. The problem is solved with using the method of catching a moving front. On the basis of numerical 

results influence of relaxation phenomena on filtration characteristics is established.  
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I.  INTRODUCTION 
  

 Filtration of suspensions through porous media is of great practical importance. The regime with formation of 

a cake layer on the surface of the filter is of special interest [1,2,3,4,5]. If the dispersion phase of the suspensions 

consists of polymer solutions or other highly viscous liquids, the suspension may have non-Newtonian rheological 

properties [6]. In particular, the suspensions exhibit relaxation properties. Then they are not considered as viscous, but 

viscoelastic liquids. In principle, we can consider filtering models with regard to the rheological models of relaxing 

suspensions. However, it is more convenient to use relaxation filtration laws, implying that the relaxation effects in the 

filtration laws are a direct consequence of the relaxation properties of the suspension [7,8,9]. Classical Darcy`s law 

establishes an equilibrium relationship between pressure gradient p  and filtration velocity v


 that sometimes leads to 

the discrepancy of real end theoretical data. Probably, the non-equilibrium character of the dependences of v


 on p  

depends on numerous factors such as rheological non-equilibrium properties of the liquid (in particular, visco-elastic 

behaviors), interaction the liquid with matrix of porous media, adsorption of some components of oil on the surface of 

the matrix etc. At filtration of polymer solutions in porous media this phenomenon can by explained through filling and 

releasing of pores by polymers macromolecules [10]. In these conditions the equilibrium character of the Darcy’s law is 

usually violated, it takes relaxing character[11, 12,13,14]). 

Many researchers have attempted to generalize the Darcy's law with using different approaches[15,16]. 

Iaffaldano et al. [17] proposed a memory model for advection of water in porous media. The proposed model fits well 

the flux rate observed in experiments of water flux through sands. Giuseppe et al. [18] modified constitutive equations 

by introducing a memory formalism operating on both the pressure gradient – flux and the pressure – density variations. 

The memory formalism is represented with fractional order derivatives. Experimental results show that memory effects 

lead to the delaying of the flux rate and its asymptotic values will be reached later. 

In this paper we attempt to adopt the non-Darcyan filtration theory to derive relaxation equations of 

consolidating cake filtration. Principal differences of cake filtration from deep bed filtration are the formation of 

moving unknown front – the thickness of cake layer. We are to derive an additional equation to determine this 

parameter. As a consequence, we are to spend additional efforts to numerically solve the governing equations. Firstly, 

we formulate the problem and then give its numerical solution. On the basis of computing experiments we describe 

some results.   
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Fig.1. A schematic of  cake filtration 

 

II.  FORMULATION OF THE PROBLEM 

  

 A schematic diagram depicting cake filtration is shown in Fig. 1. 

A suspension with a particle size under pressure flows toward a medium. It 

is assumed that the suspended particles cannot penetrate into the medium 

and are retained on the upstream side of the medium to form a cake. The 

suspending fluid passes through the medium as filtrate. The thickness of the 

cake  tL  increases with time as filtration proceeds.  

 Let us suppose, what the filtration velocity of the liquid phase 

relative to the pressure gradient has a nonequilibrium nature. The 

nonequilibrium relationship is assumed to be in linear differential form 
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where q
 
-  liquid phase velocity, k  - permeability coefficient,

 
 - 

viscosity, p
 
- pressure in the liquid phase, p

 
- relaxation time of 

filtration velocities, t  - time, x  - distance away from the medium.  

  Since the rates of phase filtration can have different scales of 

variation, the relaxation effects can also occur with different characteristic 

times. In this problem, we can neglect the relaxation effects of the filtration rate of the solid phase in comparison with 

the liquid phase [19,20]. Then from (1) on the basis of conservation laws we obtain the following equation with respect 

to the compressive stress of the cake phase sp  
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where  Ap
 
- characteristic pressure, 0k  - value of k  at 0sp ,  ,   - constants.   

 The flow rate 
mq

 is balanced by the flow through the filter, so we have: 
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For a consolidating cake from the continuity equations, it follows [3] 
 

0
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x

qq s , that for a given speed 

regime means constqq s 
. In contrast to the regime with a given pressure, 

spp 
 is not constant here, but is a 

function of time  trpp s 
, which is determined in the process of solving the problem. 

Here we consider a problem with a given speed regime constvqq s  0
. For this regime, the initial and 

boundary conditions for (2) have the following form 

  0,0 xps
, 01 0

00

























constv
R

p

x

p

t

k

xmx

s
p


 ,     0, tLtps

,  (4) 

where
 mR -

 
relative resistance of the filtering element. 

The equation of thickness growth for the cake layer  tL  
 has the form  
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where 0

s  
- solid content at zero pressure, 

0s - concentration of solid particles in suspension. 

 From equation (5) we can determine a mobile front  tL  
- the boundary between the suspension and the cake 

layer. This equation is solved together with the basic filtering equation (2) under the conditions (4) and   00 L . 
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 We introduce the following notations  
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With taking into account these notations equation (2) can be transformed into the following form 
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 The equation for the mobile boundary  tL , (5), takes the form  
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 To solve the problem (6), (7) with (4) and   00 L  we use the finite differences method [21, 22].   

 

III. NUMERICAL SOLUTION OF THE PROBLEM 

 

 We introduce a uniform grid by t  with the step    TNNjjttt j  ,,...,1,0,| ,  and a non - 

uniform grid by coordinate x  [21, 22]  ,0,| 1   iiiih hhxxxx LxNNNi N  ,...,1,1,,...,2,1 with 

the variable steps 0ih .  

 We are to choose the steps ih  from the interval [ 1, ii xx ] so, that the mobile boundary moves exactly on one 

step along the time grid. This approach is known as the method of catching the front in a grid node. We denote by 
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Equation (7) when 


 1ih
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 after the approximation can be written in the form  
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The obtained set of equations (8) is nonlinear, so to solve it we use the  method of simple iteration  
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  is the number of iteration. 

It can be seen that the system of equations (10) is now linear with respect to 

1

,

)1(  j

is

s

p , which allows us to use the 

Tomas’s algorithm [21]. As a condition to stop iteration procedure on this time layer, the following relationship can be 

used: 
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where   is the given accuracy of calculations.  
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The equation (9) is used to determine the step 1ih  and it can be written in the form  

        .01,,

1

1,

1

,

1

1,

1

,21,21

1

0

2

1 














 

















j

is

j

is

j

is

j

is

pj

is

j

is

j

isi

j

mi pppppppcchqh


     (14) 

By solving this nonlinear equation for each temporal layer we can determine  1ih . 

 The system of linear algebraic equations (13) is solved by the Tomas’ algorithm 
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The starting values of the coefficients 
1  and 

1  are determined from the boundary condition (10), which have 

the form 
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IV. RESULTS  

 

Numerical results with using (14), (15) were obtained with the following values initial parameters:
 

4

0
10v

m/s, 410
А

p Pa, 1210
m

R 1/m, 310 Pa·s, 130 108.0 k  m
2
, 20.00 

s
, 0076,0

0


s , 13.0 , 57.0 . 

Some results are graphically shown below. The growth of the cake thickness for different values of the 

relaxation time p
  is shown in Fig.2. As one can see the increasing of relaxation time p

  leads to the faster growth of 

the cake thickness at all other constant conditions. Fig.3 shows the compression pressure profiles for different 

relaxation times for several fixed time values. On the graphs one can see the decrease in the values of the compression 

pressure with an increase in the values of the relaxation time. This decrease for large values of time becomes 

insignificant, which can be explained by the weakening of the influence of pressure relaxation. Thus, at 450t sec. 

(Fig. 3a), the difference in the compression pressure profiles is significant, and for 1800t sec. (Fig. 3c) the 

difference is already negligible. 

With time the amount of the compression pressure at all points of the cake-layer increases. In particular, one 

can observe a significant increase in the point 0x for the case of 0 p  
from 5104.0  Pa at 0t  to 51085.0   at 

1800t sec. With allowance for the relaxation of the pressure gradient, these values are lower than for the case

0 p
. For large times this difference disappears, which is explained by the weakening of the influence of relaxation 

effects. With increasing time, i.e. with increasing thickness of the sediment, the distribution of the profiles also widens. 

Note that the graphs in Fig.3 have exact ends in the coordinate x, which coincides with the thickness of the cake layer. 

Similar graphs for the liquid pressure are shown in Fig.4. The phenomena noted above with respect to the 

influence of the relaxation parameter are also preserved for 
p . The liquid pressure rises from the point 0x along 

the thickness of the cake layer. In addition, it assumes that at the point 0x the pressure 
p  has a constant value in 

accordance with the second boundary condition in (4), i.e. 00
vRp mx


 . Thus, at the point 0x the sum of the 

pressure 
spp 
has an increasing dynamics due to growth of 

sp , while at the same time 
p  has a constant value. 
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Fig.2. Dynamics of the cake thickness at 0 p

 (1); 150  (2); 350  (3) c. 
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Fig 3. Profiles the compression pressure through thickness of the cake at  0 p

 (1); 150  (2); 350  (3) s, 

450t  (a); 900 (b); 1800  (c) s. 
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Fig. 4. Profiles of p  through thickness of the cake at  0 p

 (1); 150  (2); 350  (3) s, 450t  (a); 900  (b); 

1800  (c) s. 
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V. CONCLUSION   

 

 On the basis of obtained results it can be concluded that the relaxation nature of the flow significantly alters 

both the growth of the cake thickness and its filtration characteristics. In particular, relaxation phenomena in filtration 

laws lead to the decreasing of compression pressure and liquid phase pressure distributions. At the developed time 

stage, when current times are considerably large then characteristic relaxation time the influence of relaxation 

phenomena run out.  
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