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I. INTRODUCTION 

 

The concept of generalized order statistics (gos) was given by Kamps (1995), which is given as below: 

Let 1 2, , , nX X X be a sequence of independent and identically distributed )(iid random variables )(rv with 

absolutely continuous distribution function )(df )(xF and probability density function )( pdf )(xf , ).,( x  

Let n , 0k  , m~ 1
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jr mM , 11  nr , be the parameters such that 

0r rk n r M      , for all }1,.,2,1{  nr  . Then (1, , , ), (2, , , ), , ( , , , )X n m k X n m k X r n m k , 

nr ,,2,1   are called gos if their joint pdf  is given by 
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on the cone 
1 1

1(0 ) (1)nF x x F       of 
n  where ( ) 1 ( )F x F x  denotes the survival function 

Choosing the parameters appropriately, models such as ordinary order statistics  0, 1, . . 1 ,kth

im k i e n i     record 

values  1, , . . im k i e k    , sequential order statistics   1 21 ; , , , 0i i nn i          , order statistics with 

non-integral sample size  1 ; 0i i        , Pfeifer record values  1 1 1; , , , 0i i      and progressive type 
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II censored order statistics  ,m k  can be obtained as particular cases of gos. For simplicity we have assumed 

that 1 2 1nm m m m    . 

The pdf of r th gos is given by Kamps (1995) 

   
 

       
1

11
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                                          (1.2) 

And the joint pdf of  , , ,X r n m k  and  s, , ,X n m k , 1 r s n   is given by  
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and 

       0 , 0,1m m mg x h x h x    

Recurrence relations are quite useful in computing the moments.The result given in present paper can be used to 

compute the moments of ordered random variables if the parent population follows Kumaraswami power function 

distribution. Several authors derived the recurrence relations for gos for different distributions. See, Kamps and Gather 

(1997), Ahsanullah (2000), Ahmad and Fawzy (2003), Al-Hussaini et al.(2005), Ahmad (2007), Khan et al. (2007), 

Kumar (2011), Kumar and Khan (2013), Khan et al.(2015a, 2015b), Khan and Khan (2016). 

A random variable X is said to be Kumaraswami-Power function distribution (Kw-PFD) Abdul Moniem (2017) with 

the following probability density function pdf  
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                                                             (1.4) 

and its distribution function df  is given by 

  1 1 ; , , 0,0

b
a

x
F x a b x



 
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  
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                                                                                (1.5)` 

the corresponding survival function  SF  are 
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  1 ; , , 0,0
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x
F x a b x
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                                                                          (1.6) 

In view of (1.4) and (1.6), we get 

   11 a aF x x x f x
ab

 


                                                                                                                (1.7) 

Relation (1.7) is used to obtain the recurrence relations for moments of generalized order statistics. 

The Kumaraswami Power function distribution was introduced by Abdul-Moniem (2017), adding the new shape and 

scale parameters (Abdul-Moniem (2017)).Which is the generalization of Kumaraswami distribution. The 

Kumaraswami power function distribution reduces to Kumaraswami distribution for 1  and 1  The 

Kumaraswami distribution was appreciated for its use in hydrological phenomena and for other purposes. For more 

detail and its application see Kumaraswami (1980), Sundar and Subbiah (1989), Fletcher and Ponnambalam (1996), 

Seifiet al. (2000), Ganjiet al.(2006), Courard-Hauri (2007) and Sanchez et al.(2007). 

This paper is organized in four sections. In section 2, we have produced recurrence relation for single moments of gos 

for Kw-PFD. In section 3, we have deduced the recurrence relation for product moments of gos from Kw-PFD. In 

section 4, the characterization result based on the recurrence relation for single moments of gos for Kw-PFD is deduced. 

II. Recurrence relation for single moments for Kw-PFD from gos 

In this section, recurrence relation for single moments of Kw-PFD from gos has been obtained. Further, the particular 

cases of recurrence relation for single moments of order statistics and record values are deduced from gos. 

Theorem 2.1: Let X  be a non-negative continuous random variable and follows Kumaraswami power function 

distribution in (1.4). Suppose that 0j   and 1 r n   

   , , , 1, , ,j jE X r n m k E X r n m k    
   
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                                     (2.1) 

Proof: From (1.2), we have 
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as integrand and rest part for differentiation, we have 
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Now in view of (1.7), we get 
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and hence the result. 

Remark 2.1: Setting 0m   and 1k   in Theorem (2.1), we get the recurrence relation for single moments of order 

statistics of Kw-PFD as 

   : : :1:
1 1

a
jj j j

r n r n r nr n

j j
E X E X E X X

ab n r ab n r
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Remark 2.2: Setting 1m    and 1k   in Theorem (2.1), we get the recurrence relation for single moments of upper 
thk  record of Kw-PFD as 

   , , 1, 1, , 1,j jE X r n k E X r n k      
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Remark 2.3: Setting 1   and 1   in (2.1) we get recurrence relation for single moments of gos from 

Kumaraswami distribution. 

III. Recurrence relation for product moment of gos from Kw-PFD 

In this section, the recurrence relation for product moment of gos from Kw-PFD has been obtained. Further, the 

recurrence relations for product moments of order statistics and record values are obtained as particular case of gos. 

Theorem 3.1: Let X  be a non-negative continuous random variable and follows Kw-PFD in (1.4). Suppose that 

, 0i j   and 1 r s n    the following recurrence relation is satisfied. 
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        (3.1) 

Proof: From (1.3), we have 

   , , , s, , ,i jE X r n m k X n m k 
   

   
       11

0
1 ! 1 !

m
j rs

m

C
x F x f x g F x I x dx

r s r



                                         (3.2) 

where 
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Solving the integral I(x) by parts and substituting the resulting expression in (3.2), we get 

       1, , , s, , , , , , s 1, , ,i j i jE X r n m k X n m k E X r n m k X n m k    
   
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In view of (1.7), we obtain 
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and hence the theorem. 

Remark 3.1: Setting 0m   and 1k   in Theorem (3.1), we get the recurrence relation for product moments of order 

statistics of Kw-PFD as 

1
: s: : s 1:
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Remark 3.2: Setting 1m    and 1k   in Theorem (3.1), we get the recurrence relation for product moments of upper 
thk  record of Kw-PFD as 
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Remark 3.3: Setting 1   and 1  in (3.1) we get recurrence relation for product moments of gos from 

Kumaraswami distribution. 

 

IV. Characterization of Kw-PFD 

In this section we have discussed the characterization of Kw-PFD. Characterization of probability distribution plays an 

important role in probability and statistical science. Before applied a particular model on real world data it is necessary 

to check that given continuous probability distribution satisfied the underlying assumptions. In this section, we have 

obtained a characterization result of Kw-PFD based on recurrence relation of single moments from gos. 

Theorem 4.1: The necessary and sufficient condition for a random variable X  to be satisfied with pdf given in (1.4) 

for 1m   is that 
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   , , , 1, , ,j jE X r n m k E X r n m k     
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                                                                               (4.1) 

If and only if  
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Proof: The necessary part follows immediately from (4.1) on the other hand if recurrence relation (4.1) is satisfied, 
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Differentiating both sides of (4.2), we get 
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Now  

   
 
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a j a j a jr
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                                            (4.3) 

Integrating RHS in (4.3) by parts and using the value of  h x  from (4.2), we have 

which reduces to 
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 

   
   
                                                (4.4)  

Now applying generalization of Müntz-Szász Theorem Hwang and Lin (1984) to (4.4), which state that on a space 

 ,L a b  of summable function defined on  ,a b , a sequence of functions  nf x  is complete on  ,a b  if for any 

 ,g L a b the equalities 

    0, 1,2,3,

b

n

a

f x g x dx n   

implies that   0g x   on  ,a b , then we get 
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   11 a aF x x x f x
ab

 

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This proves that  f x  has the form as in (1.4). 
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