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ABSTRACT:-The aim of this paper is to estimate  the number of real zeros of a orthogonal  random polynomial under 

different condition  when the coefficients belong to the domain of attraction of orthogonal properties. Let 





n

0k

kk
)t()w(yy be random polynomial such that [y0 (w), y1 (w),……yn(w)] is a sequence of mutually 

independent, normally distributed random variables with mean zero and variance unity and [Ψ0 (t),……. Ψn (t)] be a 

sequence of normalized orthogonal Legendre polynomials, defined by ),t(P
2

1n)t(
nn

    where Pn(t) is the 

classical Legendre polynomial. Then, for any constant K such that (K
2
/n)→0 as n→∞, the mathematical expectation of 

number of real zeros of the equation 



n

0k

kk
)t()w(yy =k is asymptotic to 3/n . 

 

I. Basic idea about no of zeros or no of level crossing 
 

A. Level crossing: in general a level crossing means  crossing of a  railway or a railroad crossing  is a place where a 

line and a road intersect each other on the same level.In mathematics no of level crossing means no of zeros or point of 

intersection between a curve and x-axis.For example: the trigonometric functions  sin x and cos x the point of 

intersection of the  curve with x axis are  shown in the following figures called number of zeros or number of level  
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crossings of the above two curves with x-axis.

 

.  Figure 1:- Here number of zeros for sin x is nπ and no of zeros for cos x is  (2n+1)π/2 for n is any integer. 

Orthogonal polynomial: An orthogonal polynomial is a family of polynomial such that any two different polynomial 

in the sequence are orthogonal to each other under some inner product. 

 The most widely used orthogonal polynomials are classical orthogonal polynomial consisting ofa. Legendre 

polynomial, b. Hermite polynomial , c. Jacobi polynomial 

d. Bessel polynomial  

 

Legendre polynomial: The solution Legendre differential  equation are a set of functions known as the Legendre 

polynomials. The polynomials are defined on[-1,1]. 

                   We can call Legendre polynomials in Mathematics using: LegendreP[n,x]. 

Where n represent the polynomial, and x is the variable. 

 

Solution to differential equation: 

 

Legendre polynomial are one of the solutions to the Legendre differential equation ; 

                       (1 − 𝑥2)𝑦" − 2𝑥𝑦 ′ + 𝑛( 𝑛 + 1)𝑦 = 0__________(1) 

Here n is a constant is known as Legendre differential equation 

To obtain the solution of (1)we shall use series solution method. 

              An expression for the Legendre polynomial Pn(x) is given by the formula known as Rodrigues’s formula of 

degree n 

                            𝑃𝑛 𝑥 =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑥2 − 1)𝑛  

Recursive formula for Legendre polynomial: 

(a).
𝑑

𝑑𝑥
𝑃𝑛 𝑥 − 𝑥

𝑑

𝑑𝑥
𝑃𝑛−1 𝑥 = 𝑛𝑃𝑛−1 𝑥  

(b)𝑥
𝑑

𝑑𝑥
𝑃𝑛 𝑥 −

𝑑

𝑑𝑥
𝑃𝑛−1 𝑥 = 𝑛𝑃𝑛 𝑥  

(c)  𝑛 + 1 𝑃𝑛+1 𝑥 −  2𝑛 + 1 𝑥𝑃𝑛 𝑥 + 𝑛𝑃𝑛−1 𝑥 = 0 

(d) 
𝑑

𝑑𝑥
𝑃𝑛 𝑥 −

𝑑

𝑑𝑥
𝑃𝑛−1 𝑥 =  2𝑛 + 1 𝑃𝑛(𝑥) 
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Legendre polynomials are defined to be orthonormal, meaning the integral of a product of Legendre polynomials is 

either zero or one. In other words there is either an orthonormal constant  N s.t 

𝑁 𝑃𝑛 𝑥 𝑃𝑛 𝑥 
1

−1

𝑑𝑥 = 1 

They are orthogonal in[-1,1] 

1. 
𝑃𝑛 𝑥 𝑃𝑚  𝑥 𝑑𝑥 = 0 𝑓𝑜𝑟 𝑚 𝑛𝑜𝑡 𝑒𝑞𝑎𝑢𝑙 𝑡𝑜 𝑛  1

−1
 

2. 𝑃𝑛(𝑥)2𝑑𝑥 =
2

2𝑛+1

1

−1
 

Zeros of Legendre polynomial:    The Legendre polynomials are 

For n=1 the Legendre polynomial is  𝑃0 𝑥 = 1, 𝑃1 𝑥 = 𝑥 , 𝑃2(𝑥)=
1

2
(−1 + 3𝑥2), 𝑃3 𝑥 =

1

2
(−3𝑥 + 5𝑥3)and so on.                                                            

 

we know  that the even order Legendrepolynomial are even and odd orders are odd function .According to the general 

result about the zeros of solutions, thek
th

 polynomial should have  k  zeros in the interval[-1,1]. 

II.Theorem 1.1 

  Let 



n

0k

kk
)t()w(yy be random polynomial such that [y0 (w), y1 (w),……yn(w)] is a sequence of mutually 

independent, normally distributed random variables with mean zero and variance unity and [Ψ0 (t),……. Ψn (t)] be a 

sequence of normalized orthogonal Legendre polynomials, defined by ),t(P
2

1n)t(
nn

    where Pn(t) is the 
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classical Legendre polynomial. Then, for any constant K such that (K
2
/n)→0 as n→∞, the mathematical expectation of 

number of real zeros of the equation 



n

0k

kk
)t()w(yy =k is asymptotic to 3/n . 

 

III.INTRODUCTION 

Let 



n

0k

kk
)t()w(y)w,t(f)t(f Where {y0, (w), y1 (w),……….yn(w)} is a sequence of independent 

random variables on a probability space (Ω, A,P), each normally distributed with mathematical expectation zero and 

variance one. Let {Ψ0 (t),……. Ψn (t)} be a sequence of normalized orthogonal Legendre polynomials. Let ENn(f: α,β) 

be the expected number of real zeros of the equation f(t)=k in the interval α≤t≤β, where multiple zeros are counted only 

once. We know, from the work of Das [2], that in the interval –1st≤t≤1, all save a certain exceptional set, the functions 

f(t) have )(0
3

3
1

n
n
 zeros, on the average, when n is large and k=0. The measure of the exceptional set does not 

exceed exp (-n/3). 

Farahmand [3] has shown that when Ψk (t)=t
k
, has excepted number of k-level crossings of the algebraic polynomial 





n

0k

k

k
t)w(y)t(Q satisfies 

 ENn(Q: -1,1)= (1/π) log (n/K
2
), 

 ENn(Q: -∞,-1)= ENn(Q:1, ∞)~(2 π)
-1

log n. 

A corresponding estimate, when Ψk (t)=coskt, is also due to Farahamand [4] who showed that the random 

trigonometric polynomial 



n

0k

k
ktcos)w(y)t(T has )n(0n)

3

2
( 3

1

 expected number of real zeros as long 

as (K
2
/n)→0 as n→∞. 

Comparison of these results with our theorem shows the difference and similarity of behaviour of algebraic and 

trigonometric polynomial with the orthogonal polynomial considered by us. Thus, the number of crossings of the 

algebraic polynomial with the level K decreases as K increases, while for trigonometric polynomial and orthogonal 

polynomial f(t) the average number of level crossings remains fixed with probability one, as long as (K
2
/n)→0 as n→∞. 

In order to estimate ENn (f: -1,1) for the polynomial 

 



n

k

kk Ktwytf
0

,)()()(         (2) 

To find number of level crossings of the above polynomial in the interval (-1,1) we divide the interval (-1,1) into 

subintervals (-1, -1+€), (-1+€, 1-€) and (1-€,1) as in the, where .0
,

7

4

 


n  First, we derive number of level 

crossings of the above polynomial  in the interval (-1+€, 1-€)  using a well known formula to find the number of level 

crossing of any polynomial called  Kac-Rice formula, we use its extended formula  for our use.  

IV.    Extended Kac-Rice Formula for  ENn (f: α,β) 

From Das[2] and Crammerwe find that the expected number of real zeros of the equation f(t)=0 in the interval (α,β) 

satisfies: 
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  










 ,).(),:( dyyxydtfEN n                (3) 

where Φ(x,y) is the density function of the distribution of f(t) and its derivative f’(t).     

Let 

 

  ,)()()(

)()(

'

0

2

0

tttYY

ttXX

k

n

k

kn

n

k

kn













 

 

).()()( 

)()(

22

2

0

'

tYtZtXand

ttZZ

nnn

n

k

kn



 
  

Then, the joint density of (f,f) is  

  .)2/()XyYxy2(Zx- exp)π2()y,x( 2221  
                (4) 

 Let   .2/yXS 2
1

  

From (3), we have 

 






















 .

X

2YKs
 exp)2/(-Zk exp)/(),(

2
1

22 dssxdyyxy   (5). 

Putting p=
2

1

X

2YKs


in (5), we have 

 








 .ds )(-s exp )}(){exp(),( 2pspssdyyxy  

 = ,p)θ(θ{p}   

Where 



0

2 ds )sps{exp(s)p(θ  

= 



0

22
2

1 ds )2/ps(exp{)4/pexp()2/p(      (6) 

)2/p(erf2/π){4/pexp()2/p( 2

2
1   

Where f (x)= 



0

2 dt. )texp(  
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Hence from (3), (4), (5) and (6) 

  dt2/(Zkexp
Xπ

)β,α:f(EN
β

α

22

n  


  

   dt)2X/KY(erfX2/kexp
X

KY
)π/2( 2/1

β

α

2

2/3
   

 =I1(α,β)+ I2(α,β)                      (7) 

we divide the interval (-1,1) into subintervals (-1, -1+€), (-1+€, 1-€) and (1-€,1) Combining we prove theorem. 

V.  Average Number of Level Crossings in the Interval  (-1+ε, 1- ε) 

The ChristoffelDarboux formula, Sansone [5] for Legendre polynomials 

 Pn(t) reads as follows: 












 




tu

)t(P)u(P)t(P)u(P
)1n()t(P)u(P)1k2( 1nnn1n

k

n

0k

k
  (8) 

Putting hk=(2k+1)
-1

 and μn=(n+1) and following the procedure described in last section of the paper, we have 

     )t(P)t(P)t(P)t(P)1n()t(X
1n

'
nn

n

0k

'
1n

2

k 



    (9) 

     )t(P)t(P)t(P)t(P
2

1n
)t()t(Y

n

''''
1nn

n

0k

'
1n

''

k

'

k 



 


  (10) 

    )t(P)t(P)t(P)t(P
2

1n
n

'''
1n

'

n

''
1n

''
 


  

For Legendre polynomial Pn(t), we have the relations 

 )t(P)2n)(1n()t(tP2)t(P)t1(
1n1n

'''
1n

2

                  (11) 

And )t(P)1n(n)t(tP2)t(P)t1(
nn

'

n

''2      (12) 

From (11) and (12),  

we obtain ))t(P)t(P)t(P)t(P)(t1(
1n

'

n

''

n

'''
1n

2

   

=   )t(P)t(P)1n(2)t(P)t(P)t(P)t(P)1n(n
n

'

1n1nn

'

n

''
1n    (13) 

And ))t(P)t(P)t(P)t(P)(t1(
n

''

1nn

''
1n

2

   

 =   )t(P)t(P)1n(2)t(P)t(P)t(P)t(Pt2
1nnn

'

1nn

'
1n     (14) 

Differentiating (13) and (14), and multiplying them respectively by Pn(t) and Pn+1(t) we obtain, after simplifications 
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 

)t(P)t(P
t1

)1n(16
)t(P)t(P)1n(n2             

P)t(P)t(P)t(P)t(P)2n3n(
t-1

16t
            

))t(P)t(P)t(P)t(P)(t1(

1nn2n

'

1n

1nn

'

n

'
1n

2

2

1nn

'''

n

'''
1n

2
























  (15) 

FromSansone [5] we have  

 )t(ntP)t(nP)t(P)(t1(
n1n

'
n

2 


     (16) 

and ).t(tP)1n()t(P)1n()t(P)(t1(
1nn

'
1n

2

     (17) 

Hence, using (16) and (17), we have  

 )t(P)t(tP2)t(P)t(P)1n(            

))t(P)t(P)t(P)t(P)(t1(

1nn1n

2

n

2

n

'

1nn

'
1n

2








   (18) 

In the range ε≤γ≤ π – ε and 0 < ε< π/2, the asymptotic estimate of Pn(t), for t=cos γ, is given by Sansone [5] 

 ).)γ (sinn(O
4

π
γ)

2
1n( cos

γsinnπ

2 3/2-

2
1


















  (19) 

Hence 

.)t1(n(O)t1(
πn

2

)γeccosn(O
4

π
γ)

2
3ncos

4

π
γ)

2
1n( cos γ cos2

4

π
γ)

2
3ncos

4

π
γ)

2
1n(cos

γsin n π

2
     

)t(P)t(tP2)t(P)t(P

1222
1

2

22

22

1nn1n

22
n



























































 (20) 

From (17) and (19), we obtain 

.)t1(n(O)t1(
π

2
     

)t(P)t(P)t(P)t(P

2/1212
1

2

1nn

'

n

'
1n









     (21) 

By the first theorem of Sansone [5] we have 

 .)t1(n8)t(P 4/522
1'

n
  

 Hence 

 .)t1(0)t(P)t(P 2/32'
nn

       (22) 
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With the help of above estimates we are in a position to calculate asymptotic estimates of X, Y and Z.  

Using (20) and (22) in (12) we have 

.)t1(n(O)t1(
π

n2
    

)t(P)t(P)t(P)t(P)(t1(

2/3222
1

2

2

1n

'

n

''

n

'''
1n

2









 

Hence 

.)t1(n(O)t1(
π

n2
    

)t(P)t(P)t(P

2/522
3

2

2

1n

'

n

''''
1n









    (23) 

From (16), (22) and (23), we have  

.)t1(n(O)t1(nn
t1

t16

π

2
    

)t(P)t(P)t(P)(t1(

2/322
1

22

2

1n

'''

n

'''
1n

2




















 

So that  

 

.)t1(n(O)t1(n
π

2
    

)t(P)t(P)t(P)t(P(

2/522
3

22

1n1n

'''

n

'''
1n









                 (24) 

Using the above estimates in (10), (11) and (12), we obtain 

 )n(O1()t1(
π

2
X 12

1
2 

       (25) 

))t1(n(OY 2/32         (26) 

))t1)(n(O1()t1(
π3

n2
Z 1212

3
2

3


     (27) 

From the definition of ∆, we have 

22 YXZ         (28) 

 ))t1)(n(O1()t1(
π3

n4 32222

2

2

     (29) 

From (28) and the fact that K
2
/n→0 as n→∞, we have  

)n(O
X

K
δ7

2

2/3

2




  

From (28) and (29), we have 
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)n(O
X

KY
δ7

2

2/3




  

From (25) and (29), we have 

)n(O
2

ZK
δ7

2

2

2







        (30) 

From (30) it is clear that 

1)
2

ZK
()nexp(

2

2

δ7

2



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Since 
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2
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 tends to zero for large n, 
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Also from (28) and (31), we have 
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Consequently, we have 
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Since erf (X)≤1 
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Thus from (33) and (34), we obtain 
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V. AVERAGE NUMBER OF LEVEL CROSSING IN THE INTERVALS (-1,-1+ε) AND (1- ε ,1) 

We show that in the ranges 1- ε≤t≤1 and -1≤t≤-1+ ε, the number of zeros of K)t()ω(y
k

n

0k
k




is small, in 

comparison to those in the interval already considered. 

We consider the interval (1- ε,1), to begin with. 

Let   F(z)=f(y( )ω , z) 

  = K)z()ω(y
k

n

0k
k




                       (36) 

Wherey )ω ,isthe random vector [y0( )ω , y1( )ω ,…..…yn( )ω ] 

Now   F(y)=f(y )ω   = K)z()ω(y
k

n

0k
k




 

is a random variable with mean –K and variance 



n

0k

k

22 ,0)1(ξ  

and so has the distribution function, 
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Let  )ω(ymaxI
k

nk0
n


  we have,

2/n

n
e1)nI(P   

Let  )e21(maxT θi

k
nk0

n



Then 
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.KTn                        

KTI                        

K)e21()ω(Y                      

)e21()ω(Y)e21(f

n

2

n

0k
n

n

n

0k

θi

kk

n

0k

θi

kk

θi





















 

Hence we have   2

n

n

2θi

2

e1KTne21(fP


     (38) 

1.6 Conclusion:-By considering 



n

0k

kk
)t()w(yy be random polynomial such that [y0 (w), y1 (w),……yn(w)] is a 

sequence of mutually independent, normally distributed random variables with mean zero and variance unity and 

[Ψ0(t),Ψ1 (t),…….] be a sequence of normalized orthogonal Legendre polynomials, defined by 

),t(P
2

1n)t(
nn

 where Pn(t) is the classical Legendre polynomial. Then, for any constant K such that 

(K
2
/n)→0 as n→∞, we found the mathematical expectation of number of real zeros of the equation 





n

0k

kk
)t()w(yy =k is asymptotic to 3/n .Hence our theorem is proved  
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