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ABSTRACT: In the paper an active solute transport problem in a fractured-porous medium is considered with taking 

into consideration linear and non-linear non-equilibrium adsorption, corresponding to Henry and Freundlich isotherms 

at equilibrium state. The problem is numerically solved and the influence of non-equilibrium adsorption on solute 

transport characteristics is established. 
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I. INTRODUCTION 

 

Studies on fluid flow and solute transport in fractured porous medium (FPM) unambiguously show the effect of 

fractures on the effective permeability and the effective diffusion coefficient of FPM. For non-reactive (inert) solutes, 

the free space of porous blocks between fractures represents storage, where the solute is retained for a long time. This 

prolongs the time of release of these solutes to the surface, thereby increasing the technical and economic parameters of 

underground reservoirs as storage for various pollutants [1-3, 18].  

In the case of radioactive substances, the decay time is prolonged because of the delay in the porous blocks before the 

substance exits to the surface [4, 5]. The porosity of blocks (matrix), that are in contact with fractures, allows the 

transition of substance from fractures to blocks (or vice versa), is called as diffusion porosity or porosity of the matrix 

[6, 8]. We note that this concept was introduced earlier in [16].  

The recent studies show that the diffusion of pollutants into the matrix can lead to a significant retardation of its 

transport in the fracture. In [7], using the finite element method, the sensitivity of the model was analyzed from the 

parameters included in the model during the transport of substance in a fracture with diffusion into the matrix. These 

parameters are: fracture opening, fluid velocity in the 

fracture, diffusion porosity (matrix porosity), matrix 

distribution parameter, dispersivity. 

Theoretical studies of the injection of radionuclides into the 

well in a fractured-porous medium are well described by 

authors of [10, 12, 13, 14]. In these work the models I and II 

were used. Each model is implemented for various boundary 

conditions at the location of the well, namely, for a constant 

concentration and an exponentially decaying concentration. 

In the model I radionuclide is transported in the fracture 

through radial convection (advection) and longitudinal 

dispersion, while in the model II only radial advection is 

taken into account. Both models take into account the delay 

effects associated with radioactive decay, as well as linear 

adsorption isotherms in both the fracture and the porous 

matrix. Solute transport from the fracture to the porous block 

      Fig.1. Schematic structure of the solute     

                transport of in FPM 
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is accounted for by molecular diffusion. It is established that the role of longitudinal dispersion is manifested for 

relatively large periods of radionuclide injection.   

In [9] the solution of the solute transport problem in a fractured medium is presented, where the solute diffuses from 

the fracture into the porous matrix. The solute is inert and does not react with the matrix skeleton and fracture rock. 

Transport equation in the fracture is one-dimensional equation of convective (advective) diffusion, and in the porous 

blocks – a one-dimensional diffusion type equation. The analytical solution of the problem was used to interpret the 

laboratory data obtained in [7]. 

In this paper we consider a solute transport problem in a medium, consisting of a single fracture and adjusted porous 

block (Figure 1). Solute transport in the fracture governed by convection, diffusion (hydrodynamic dispersion), 

adsorption processes, while in the porous block only diffusion and adsorption processes occur. Two kinds of adsorption 

kinetics in both elements of the medium are considered. At the asymptotic stage (for large times) the dynamics of 

adsorption corresponds to Henry and Freundlich isotherms. A solute transport problem is posed and numerically solved. 

Solute concentration in mobile liquid and concentration of adsorbed mass are computed for different values of initial 

parameters. Relative solute mass transport in different form through common boundary of the fracture and the porous 

block is estimated.     

 

II. FORMULATION OF THE PROBLEM 

 

We consider the case where the solute has chemical-biological or radiation activity. Chemical-biological activity means 

the interaction of the solute with the rock skeleton or solute degradation under the influence of chemical or biological 

processes [15, 16]. In radioactive disposals due to the natural decay solute concentration gradually decreases. It should 

be noted that due to the decay or degradation for a certain time, the concentration of the substance can reach zero 

values completely. 

Since here the adsorption of solute on the rock surface is considered, we are to consider decay or degradation of the 

adsorbed solute also. We assume that the decay or degradation of the solute both in the free volume and in the adsorbed 

state occurs according to the same law, but in the general case, with different parameters. At these assumptions mass 

transport equations in the fracture and the porous block have the form [8, 17]: 
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where  xtcc ff ,  - the concentration of the solute in the fracture, m
3
m

-3
;  yxtcc mm ,,  - the concentration in the 

matrix, m
3
m

-3
; ),( xtss ff   - the concentration of the adsorbed solute in the fracture, m

3
kg

-1
; ),,( yxtss mm   - the 

concentration of adsorbed solute in the matrix, m
3
kg

-1
; *

fD , *

mD  - effective diffusion coefficients in the fracture and 

the matrix, respectively, m
2
s

-1
;   - density of saturated medium, kgm

-3
; V  - average flow velocity in the fracture, ms

-1
; 

b  - fracture width, m; 
m  - the matrix porosity coefficient, t  - time, s; mf  ,  are coefficients of chemical-biological 

degradation of solute in the fracture and in the matrix, respectively, or radioactive decay
 
coefficients )( mf   , s

-1
; 

smsf  , are the coefficients of chemical-biological degradation of the adsorbed solute in the fracture and in the matrix, 

respectively. In the case of radioactive solute we can put 
smsf   . 

We consider two models of adsorption. 

Model I. Here we assume that the adsorption of solute in FPM occurs according to linear equilibrium kinetics [17] 
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where 
mf  ,  are the coefficients characterizing the intensity of the adsorption processes in the fracture and in the 

matrix, respectively, s
-1

, 
mf kk , are the adsorption coefficients in the fracture and in the matrix, m

3
kg

-1
. 

From equations (3) and (4) at t  we obtain linear equilibrium adsorption 
fff

сks   and 
mmm
сks  , respectively 

(Henry isotherms).  

 

Model II. Here, instead of the linear kinetics of adsorption (3) - (4), we consider the non-linear kinetics [19] 
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where N  is a constant. From equations (5) and (6) at t  we obtain the non-equilibrium equations N

fff cks  , 

N
mmm cks  , respectively (Freundlich isotherm).      

Let initially the medium is filled with pure (without solute) liquid. From the inlet section of the fracture ( 0x ) liquid 

with solute concentration 0с  is injected under constant average flow velocity V . At x  in the fracture and at 

y  in the porous block no solute transport occurs. On the common boundary of the fracture and the porous block 

we adopt the continuousity of the concentration fields. Then the initial and boundary conditions we can take in the 

following form 

        0,,0,0  yxcxc mf
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                      0,,0,0  yxsxs mf
.       (12) 

So, we are to solve (1), (2) and (3), (4) (or (5), (6)) with conditions (7) - (12). 

 

III.  NUMERICAL SOLUTION OF THE PROBLEM 

 

We solve the system of equations (1) - (2) with (3) - (4) under the conditions (7) - (12) by the method of finite 

differences [20]. 

In the porous block domain we introduce the following net domain 

 KkJjIijhyihxktyxt jikjikhh ,0,,0,,0,,,);,,( 2121
 

, where   - step of the grid with respect to 

time, 
21,hh  - step of the grid with respect to x  and y  coordinates, respectively, JI ,  - enough large integers that are 

to be chosen such to cover concentration change area. The time step   we choose as 
K

tmax , where 
m axt  is maximal 

time, we study the problem in the time segment  max,0 tt . 

Equations (1) - (2) and (3) - (4) are approximated as follows: 
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where k

jicm ,
, k

icf , k
jism ,
, k

i
sf  are the grid functions corresponding to 

mc , fc , ms , fs ,  respectively. 

Equations (13) - (16) are implicit finite difference schemes with respect to grid functions k

jicm ,
, k

icf , k
jism ,
, k

i
sf . 

The initial and boundary conditions (7) - (12) are approximated as:  
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Equations (13) - (16) are reduced to the following form 
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The systems of linear algebraic equations (23) - (24) are solved by the Tomas’ method [11]. After determining the 

concentration fields, it is possible to determine the adsorption fields k

i
sf , k

jism ,
 from  (25), (26).  

 

IV. DISCUSSION OF RESULTS 

 

Using the numerical results, profiles of concentrations 
fc  and mc , as well as adsorbed mass concentrations fs  and 

ms , both in the fracture and in the matrix are drawn. 
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In calculations the following initial values of parameters are used: 01.00 c m
3
m

-3
, 2.0m , 6101  mD m

2
s

-1
, 

5106  fD m
2
s

-1
, 4105 V ms

-1
, 4104 b  m,  3105.2  kgm

-3
, 4104  mm 

 
s

-1
 and the various  . 

Some results of calculations for two models of kinetic adsorption are shown in Fig.2-4. In Figures 2-3 solute 

concentration surface and the adsorbed mass surface for the two adsorption kinetics (Model I, II) are presented. In Fig.2 

surfaces of 
0/ ccm
 and ms  for 5103  fm kk m

3
kg

-1
 and at the case 

smsfmf    are shown.  

Comparing the presented data, it can be seen that the solute decay leads to a reduction of concentration distribution area 

width both for the solute and the adsorption fields. 

The comparison of Fig.2a and Fig.2b shows that the solute decay in the fracture and the porous block leads to a 

narrowing of the solute distribution zone. The solute concentration due to decay quickly fades in the fracture, which 

affects on the concentration distribution in the porous matrix. However, the maximum value of the adsorbed mass does 

not change when the solute decays. 

In Fig.3 similar surfaces are given at 5103  fm kk m
3
kg

-1
, 83.0N  for the non-linear non-equilibrium adsorption 

kinetics (Model II) at the steady state corresponding to the Freundlich isotherm. In this case, the maximum value of the 

adsorbed masses at the point  0,0  was equal to 6106.0  m
3
kg

-1
, while for the equilibrium case of the adsorption 

kinetics corresponding to the Henry isotherm, this value is equal to 61028.0  m
3
kg

-1
. 

As can be seen from the presented data, the concentration fields, as the intensity of adsorption increases, are of limited 

distribution - the range of concentration changes will narrow. In Fig. 2a, the propagation of the concentration field in 

the y  direction is extended from 75.0 m at 10000t  s, and in Fig. 3a one can see, the concentration distribution area 

does not reach 75.0 m. From the presented data we see that at the same other parameters, the non-linear law of 

adsorption leads to the narrowing of the solute concentration distribution in comparison with the linear law. 

The decay of the solute in this case also leads to a reduction in the solute concentration distribution and the adsorption 

mass concentration in the fracture and porous block (Fig. 3a, b). 
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Fig.2. Surface 
0ccm
 and ms  for the linear kinetic adsorption according to Henry isotherm with 0 (а),     

          4103   s
-1

 (b),  10000t s. 
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The dynamics of the relative solute flow rate from the fracture to the matrix 
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DQ   is estimated and the 

graphs of its change are plotted. On the basis of Q  the common relative mass transport through 0y  is calculated as 
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 for each time t . In addition, the total relative solute mass transport through 0y  is determined as 
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0 00

. 

Some graphs for Q , 
comQ , totQ  are presented in Fig. 4. The distribution of Q  at 7200t s for two laws of adsorption is 

presented in Fig. 4a. As we see, for non-linear adsorption, up to certain distances in x  values of Q  are greater than in 

linear case at all other identical parameters. From the certain distance x  the character of dependences is  

changed and for non-linear adsorption the values of Q  is smaller than in linear adsorption law. These phenomena can 

be explained by forming greater concentration gradients for nonlinear adsorption law up to certain x  and its smaller  

Fig. 3. Surface 
0ccm
 and ms  for the non-linear kinetic adsorption according to Freundlich isotherm with 0 (а),    

           4103   s
-1

 (b),  10000t s,  83.0N  
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values for greater x . If can be seen also, decay of solute leads to the increasing of Q  up to some x  after that values Q  

are smaller than at the case of non-decay solute. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above discussed character of Q  reflects on 
comQ  and 

totQ  behavior. As in Q , the solute decay leads to greater 

values of totQ  (Fig. 4 b, c). In the dynamics of 
comQ  on can observe non-monotonous dependence. In the case of 

nonlinear adsorption at all other constant parameters comQ  and totQ  increase. At first sight can seem, that the decay 

should lead to the reduction of Q  and, as a consequence, 
comQ , 

totQ . However, here we deal not with the real solute 

mass flow through common boundary of two zones but with the relative mass flow. The fact, that non-linear adsorption 

leads to the increasing of 
comQ  and 

totQ , is the direct consequence of the same behavior of Q  . Unlike 
comQ , in 

totQ  

we have monotonous behavior. It is consequences of that, 
totQ  represents the integrated characteristic of the solute 

mass transport. 

 

IV.   CONCLUSION 

 

Solute transport in fractured porous media (FPM) have so far been studied relatively little. This is due to the complex 

geometrical configuration of such media and, consequently, the complexity of mathematical modeling of the transfer 

processes in them. In this paper a solute transport problem in a medium, consisting of a single fracture and adjusted 

porous block is considered. This schematization of FPM allows us analytically investigating characteristic features of 

the solute transfer process, in particular, internal mass transfer between the system of fractures and porous blocks.  

The solute is treated as an active substance and its degradation and decay, as well as non-equilibrium adsorption both in 

the fracture and in the porous block are taken into account. The degradation coefficients in the transport equations are 

assumed to be equal in the case of a radioactive solute. Two models of kinetic adsorption are considered: linear and 

nonlinear. A solute transport problem for the one-dimensional case is numerically solved using the finite difference 

method. Based on numerical calculations, it was found that the solute decay slows down its spread in the fracture, and 
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as a result, in the porous block. In turn, this leads to a corresponding slowdown in the propagation of the adsorption 

field. It was established that, at all other parameters being equal, nonlinearity in kinetics leads to an intensification of 

the adsorption process. Consequently, with nonlinear kinetic adsorption, under stationary conditions corresponding to 

the Freundlich isotherm, a more accelerated slowdown in the solute propagation in the fracture and the porous block is 

observed. The relative current ( Q ), common ( comQ ) and total ( totQ ) mass transfer from the fracture to the porous 

block are estimated. It is shown that up to some distances x  for a decaying solute Q  is greater than for a non-decaying 

one. For more x  the nature of the change is reversed. For nonlinear adsorption kinetics, somewhat overestimated 

values were obtained. In 
comQ  a non-monotonic dynamics is appeared, which is explained by the occurrence of large 

concentration gradients at the initial moments of time. In 
totQ  

such non-monotonicity is not observed, which is 

explained by the integral behavior of this parameter. In all cases, the solute decay leads to an increase in the values of 

these relative solute fluxes. At first glance, this is paradoxical. However, it should be noted that these fluxes are relative; 

they do not characterize the total solute mass transported through the common boundary of the fracture and the porous 

block. 
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