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ABSTRACT: Stable algorithms for suboptimal estimation of unobserved coordinates of joint random processes are 

presented on the basis of conditional Gaussian filtering methods. To make the procedure of suboptimal estimation more 

stable, an algorithm was used to find the pseudo inverse matrix using direct numerical analysis of the recursive type. 

The above algorithms allow to increase the accuracy and stability of the procedure for estimating the unobserved 

coordinates of random processes. 
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I.INTRODUCTION 

 

The problem of estimating the realization of random processes containing some useful information and taking place in 

the presence of various types of interference arises in many areas of science and technology. Depending on the purpose, 

a variety of technical transmission or retrieval systems operate under different conditions and different requirements are 

imposed on them [1-10]. If the information parameters of the useful signal change on the observation segment, the 

problem of estimating the parameters is also transformed into a filtration problem. In solving this problem, it is 

necessary to obtain an estimate of the realization of a directly unobserved random process on the basis of observing the 

realization of a random process and known a priori information. The result of solving filtration problems is the optimal 

rules for estimating random processes and the corresponding structural diagrams of the optimal estimation devices, as 

well as the potential performance characteristics of their functioning[1,4,5,8]. We note that in the solution of various 

filtration problems, the concept of conditional Gaussian filtration turns out to be very effective [3,11-13]. 

 
II. FORMULATION OF THE PROBLEM 

 

Consider the joint process )]1(),1([)1(  kYkXkZ TTT
, which is described by the stochastic difference 

equation[3,11,12]: 

)()](;,1[)](;,1[)1( kNkZkkГkZkkФkZ zzz  , ,...,2,1,0k    (1) 

where )1( kZ  is the vector column of size 1)( mn ; )1( kX  – ( 1n )-dimensional unobserved component of the 

vector )1( kZ ; )1( kY -part of the components of vector )1( kZ , available for direct observation; ][zФ  and ][zГ  

are known vector functions of their arguments; )(kN z  are the vectors of independent Gaussian random variables with 

zero mathematical expectations and unit variances. 

 

Suppose that the functions on the right-hand side of equation (1) have the form 
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According to (3), we can write 
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In optimal or quasi-optimal discrete filtering algorithms, the result of each newly obtained measurement must be 

processed to determine the state vector estimate. However, in practical implementation of these algorithms, a certain 

calculation time is required to process the result of each next measurement, which depends on the dimensions of the 

state and observation vectors, and also on the form of the functional dependences of the matrices Ф and В entering the 

right-hand parts of the filtering algorithms for conditionally Gaussian processes of the form [12-14] 
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For the overwhelming majority of practical problems, it is usually required to provide the highest possible accuracy of 

the state vector estimation, including in the presence of certain limitations, in any case, for the given models of state 

and observation vectors it is first expedient to synthesize optimal or quasi-optimal algorithms for processing 

information[2,4,12,15]. 

 

In the derivation of quasi-optimal algorithms for estimation, these simplifications are directed primarily at the 

analytical record of the corresponding recurrence relations, and in deriving suboptimal algorithms they must also 

ensure the fulfilment of the specified constraints [2,11,16]. 

Therefore, it is possible to significantly reduce the total computational costs if, instead of (5), we use a suboptimal 

estimation algorithm 
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in which the sub-optimal values of the transmission coefficient matrix )1( kK  are determined in some manner in 

advance. The quality of estimating the vector of unobserved components using the suboptimal algorithm (8) will 

depend substantially on a more or less successful selection of these transmission factors. 

 

Let us consider the choice of the transmission coefficients of the suboptimal filter (8). To significantly reduce the 

computational costs for each evaluation cycle, when passing from the optimal algorithms (5) - (7) to the suboptimal 

algorithm (8), these coefficients can be calculated in advance, i.e. before processing a specific implementation of the 

observation vector. Thus, we arrive at the problem of parametric optimization [3,5], a fairly general method of solving 

which is as follows [12-14]. On the basis of (5), (6), taking into account (8), the equation for estimation errors can be 

written in the form 
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The problem of parametric optimization can be formulated as follows. Find a sequence of matrices )1( kK  for which 

the average risk is minimal at each step 
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On the basis of the necessary condition for the extremum, the length of the determination of the unknown matrix 

 ,)1( ijKkK  ,,1,,1 mjni   can be arrived at to the system of equations 
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If the solution of the system of equations (11) exists, then the found sequence of matrices )1( kК  will provide, within 

the framework of the suboptimal filter structure given by expression (8), the best estimate quality for all realizations of 

state and observation vectors, in the sense of minimum mean risk (10). 

 

An analytical solution of the problem of parametric optimization, even for conditionally Gaussian processes, 

encounters considerable difficulties [3,6,11]. The exact solution of the problem of parametric optimization of the 

suboptimal estimation algorithm (8) can be found in the practically important special case, when the matrices xxФ , yxФ , 

xГ  and уГ  do not depend on the observation vector )(kY . In this case, the process )1( kЕ , defined by equation (9), 

itself will be Markovian for Gaussian the initial distribution of its distribution will be Gaussian at any other time. The 

change in the parameters of this distribution in time is described by the difference equations [12,13,16]: 
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Since at the initial moment of time an a priori mathematical expectation of the state vector is usually taken for an 

estimate, the initial value of the mathematical expectation of the estimation error is zero. In this case, according to (12), 

it will be zero for any other instants of time, i.e. the estimate at the output of the filter (8) will be unbiased regardless of 

the choice of the matrix )1( kK . 

 

The right-hand side of equation (13) is a quadratic function of )1( kK . Adding it to a complete square, we rewrite (13) 

in the form 
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Since the mathematical expectation of the estimation error is zero, in this case the average risk can be described by the 

equation 

)]1([)]1([  kBPtrkKRG .     (14) 

Thus, the average risk (14) will be minimal if )1( kK  is chosen so that the second term of the resulting equality is 

zero [4,12,14]. Hence we have 
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We note that the result obtained does not depend on the matrix В  in (14). If the state vector is completely observable, 

then at least for linear systems it is always possible to estimate the components of the state vector with a finite mean 

square error and, consequently, the elements of the matrix )1( kP  will remain finite for the coefficients of the state 

and observation state models that are limited for all time instants [5,15]. This circumstance can be used to select the 

transmission coefficients of the suboptimal filter (8) without solving the parametric optimization problem. 

 

Thus, in calculating the matrices )1( kK  and )1( kP  in expressions (15) and (16), it is necessary to reverse the 

matrix ])([)( T
yy

T
yxyx ГГФkPФkA   at each step. The efficiency of the suboptimal estimation algorithm (8) 

essentially depends on the accuracy of the inversion of this matrix. 
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III. SOLUTION OF THE TASK 

 

In a number of computational problems of linear algebra, it is required to find the pseudoinverse matrix G  in terms of 

the Moore-Penrose relation to the matrix G. An extensive literature is devoted to a discussion of the problems of 

numerical determination of pseudoinverse matrices [17-20]. One of the most popular and widely used methods for 

finding a pseudo-inverse matrix is to use recursive algorithms that generalize the recursive method for determining 

pseudo-solutions of linear algebraic systems [21]. 

 

The matrix )(kA  in the expressions (15) and (16) is square and positive definite. Taking this into account, we 

introduce the following notation. Let ntat ,...,2,1,   – be the rows of the matrix )(kA , and let ntt ,...,2,1,1   – be a 

sequence of matrices of dimension )( nn  satisfying the recurrence equation 

tt
T
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T
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
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)( nnII   – unit matrix. 

Denote by ntct ,...,2,1,  , the rows of the matrix nI   and define sequences of matrices ntX t ,...,2,1,  , of 

dimension )( nn  by means of recurrence equations 
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)(00 nn  - null matrix. 

The systems of equations (17), (18) have the following solutions: 
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By the property of pseudoinverse matrices [17] 
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Consequently, 
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When solving systems of recurrence equations (17), (18), it is necessary to calculate the discontinuous function  
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an error in the calculation of which at a value of T
ttt aa 11    close to zero can greatly distort the results obtained. It was 

shown in [13,22] that the accuracy of the computations can be monitored from the tracks of the matrix t , nt ,...,2,1  

and can not be computed if their accuracy does not correspond to the conditionality of the matrix )(kA . 

The system of recurrent equations (19) is successively solved and the values 
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which must be equal to one, and also the values of 22 / tttt   , which must be zero. The difference between 

these parameters and the indicated ones testifies to the accumulation of errors in the calculation of tx and t . If it turns 

out that the line with the number   leads to large errors in )/( *
1111    aaaaSp T

, 
22

1    ,  , then it 

is natural to declare this line as a linear combination of lines 11,..., aa , putting 01 
Taa   , since in this case 

Taa   1  is always sufficient small value. 

 

IV. CONCLUSION 

 

The above algorithms make it possible to increase the accuracy and stability of the procedure for suboptimal estimation 

of the unobserved coordinates of random processes. 
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