

ISSN: 2350-0328

International Journal of Advanced Research in Science,

Engineering and Technology

Vol. 4, Issue 9 , September 2017

Copyright to IJARSET www.ijarset.com 4564

Architecture, Programming and Performance

of MIC Phi Coprocessor
JanuszKowalik, Piotr Arłukowicz

Professor (ret), The Boeing Company, Washington, USA

Assistant professor, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Poland

ABSTRACT: The article is showing the advantage of using Xeon PHI processors along with well-established

technologies like MPI and OpenMP over newer but more troublesome OpenCL and GPGPU approach. The state-of-the

art Xeon PHI technology is presented and brief summary about the architecture and performance is discussed.

KEYWORDS: Xeon Phi, Performance, MPI, Saxpy, Vectorization

I. INTRODUCTION

Typical solution algorithm for scientific and technical problem is a mix of highly parallel, lowly parallel and sequential

components. This led computer designers to the idea of heterogeneous computing technologies where architecturally

different processors execute parts of algorithms. Two distinct heterogeneous architectures appeared between 1990 and

2012. Table 1 summarizes key features of the General Purpose Graphics Processing Units (GPGPU) and the Many

Integrated Core (MIC).

Table. 1. Summary of the GPGPU and the MIC technologies.

Two heterogeneous computer technologies

GPGPU and MIC

1990s 2010+

GPGPU Intel MIC technology

General Purpose Graphics Processing Many Integrated Core

Unit highly parallel Xeon PHI

ACCELERATOR COPROCESSOR

Devices slaves to CPU Peer to host CPU

Require new programming tools: CUDA, OpenCL
Uses well established software development languages

and tools: C, C++, Fortran, OpenMP, MPI

Both technologies objective is speeding up computation but their architecture, software and program execution modes

are significantly different. GPGPU highly parallel devices are accelerators whose relationship to CPU can be called the

master-slave relation. On the other hand (MIC) Phi coprocessor is a peer partner of CPU that can either collaborate

with CPU or execute algorithms independently alone. Intel Phi architecture is a part of the announced in 2016 new

HPC initiative called the Scalable System Framework. Intel expects this framework to be a steptowards exascale

computing.

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of Advanced Research in Science,

Engineering and Technology

Vol. 4, Issue 9 , September 2017

Copyright to IJARSET www.ijarset.com 4565

II. ARCHITECTURE

Fig. 2. Phi coprocessor architecture

The simplest architectural description of Phi coprocessor is the Symmetric Multiprocessor (SMP) on a chip [1]. A

slightly more precise definition is the Cache Coherent Uniform MemoryAccess (ccUMA) processor. The cores are

connected by a bidirectional bus shown in Fig.2. Phi clock frequency is lower than the state of the art Intel CPU and the

memory size is smaller. The impressive performance of Phi comes not from clock frequency but its many core

parallelism. Each core has two processing units: the scalar processing Unit (SPU) and the vector processing unit (VPU).

Instruction is fetched, decoded and then executed either by SPU or VPU.

Both SPU and VPU have access to scalar and vector registers, data and instruction L1 cache memories and L2 cache.

The simplest heterogeneous platform with Phi contains one or two CPU processors and one Phi coprocessor. It is

important to note that these processors do not share memory. They communicate via Peripheral Communication

Interface express bus (PCI). This bus is relatively slow and may become a bottleneck if improperly used.

Phi coprocessor is one of the most successful building blocks of large supercomputers. In November 2015 TOP-500 list

contained 35 supercomputers using Phi coprocessors. Among them was the champion Tianhe-2 supercomputer in

China and Stampede in the Texas Advanced Application Computing Center.

Phi can be regarded as a Linux’s cluster network node. This and the Phi peerage relative to host CPU justify the name

coprocessor rather than accelerator although PHI can accelerate computation. Further arguments supporting the Phi

status as coprocessor will be explained in the next section on Software and Programming.

III. SOFTWARE AND PROGRAMMING

The key software observation is that software stack architecture of CPU and of Phi are almost identical. This allows

user to choose from several options for executing program. We discuss these options later in this section. One of the

very pregnant in consequences decision made by Intel was not designing new parallel languages for Phi. Instead Intel

extended existing familiar languages and accepted by the HPC community standard programming tools. The languages

include: C, C++, Fortran and OpenCL [5].

Software development tools include: OpenMP [2], MPI [3], Cilk Plus [4], Thread Building Blocks (TBB) and Intel

Mathematical Kernel Library (MKL). This decision positively influenced porting existing software to platforms

withPHI coprocessors.Fig.3 illustrates porting advantage for coprocessor PHI.

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of Advanced Research in Science,

Engineering and Technology

Vol. 4, Issue 9 , September 2017

Copyright to IJARSET www.ijarset.com 4566

Fig.3. Phi porting advantage.

For the sake of fairness it should be added that GPUs have proved to be successful in application areas dealing with

graphics and visualization and may be the preferred technology for corresponding users. On the other hand it might be

hard for GPU to compete with the MIC technology in the application areas where OpenMP and MPI already have been

used as standard tools for parallel software. Initial feedback from users who ported their OpenMP and MPI programs to

computers with Phi indicates that porting has been easy and economically attractive.

MIC hardware and software architectures allow users of platforms with Phi three option of using Phi coprocessor

shown in Fig.4.

Fig.4 Three options for executing programs.

Symmetric.

Here workload is divided and one part is executed on CPU and the second part on Phi. This option uses the entire

platform power. An example could be an MPI application where some processes are running on CPU and other on Phi.

In this case the programmer should ensure well balanced workloads keeping in mind the CPU and Phi performance

differences.

Offload.

In This option the code is compiled and executed on CPU but some highly parallel parts of the algorithm are offloaded

to the Phi coprocessor. Offload is somewhat similar to the GPU style of computing.

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of Advanced Research in Science,

Engineering and Technology

Vol. 4, Issue 9 , September 2017

Copyright to IJARSET www.ijarset.com 4567

Native.

Phi coprocessor working alone. The code is compiled and executed on Phi coprocessor. This option is very fast for

codes that are uniformly highly parallel. The offload option has two cases: firstly non-shared memory case for

applications with bitwise capable data such as arrays and scalars and secondly virtual shared memory case for problems

with complex data structures using pointers such as trees and linked lists. Two cases are shown in Fig. 5.

Fig. 5. Two offload cases.

Most common data types in scientific and technical application are scalars and arrays so we can use the non-shared

memory case. In non-shared memory case the data are transferred between CPU and Phi via PCI. To minimize the

communication penalty we minimize the ratio of transferred data size to the amount of computation. An example of

favorable ratio is, if transferring n data items to Phi is followed by executing n-square operations. Consider for instance

computation of matrix/vector product. If matrix A is stored in Phi then transferring vector v from CPU to Phi and

computing the Av product would satisfy the desired property of minimizing ratio of transfer to computation.

VI. PERFORMANCE

A helpful hint how we should use a heterogeneous platform. With Phi is provided by Fig.6 showing performance of

CPU and Phi as functions of used threads.

Fig.6. CPU (blue) and Phi (red) performance

The central idea of using heterogeneous computer is assigning parts of code to processors that execute them best. In

this spirit I/O, sequential and lowly parallel tasks should be assigned to CPU. Phi coprocessor is best for highly parallel

tasks. Obvious assignment cases include:

a) run uniformly highly parallel code on Phi coprocessor alone.

b) small problems that do not scale up to using about 50-60 cores should use CPU

c) for problems that have well defined highly parallel components consider offload.

For some algorithms choosing offload versus native execution option requires a trade-off consideration. Offload needs

data transfer reducing performance but each device is working optimally. On the other hand the native option

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of Advanced Research in Science,

Engineering and Technology

Vol. 4, Issue 9 , September 2017

Copyright to IJARSET www.ijarset.com 4568

eliminates data transfer but some scalar or lowly parallel tasks have to be executed by Phi coprocessor that performs

best for highly parallel tasks.

In general it is recommended to involve all cores with each core running at least two threads. This advice boils down to

using at least 100 threads total. Published results of benchmark testing and real applications fully support this

recommendation. This rule has been termed the scaling rule by Intel researchers [1]. They demonstrated that scaling is

not sufficient for achieving optimal Phi performance of 1 TeraFlops for double precision. The second required key

performance factor is vectorization.

V. VECTORIZATION

Vectorization is a group of data of the same type than is processed by a single operation. Vectorization is also called the

Single Instruction Multiple Data (SIMD). In Phi coprocessor vectorization is using the data parallel engines VPU that

perform SIMD operations. The Intel Xeon Phi coprocessors vector engine VPU supports 512-bit vector width.

The vector instructions mean performing 16 single precision or 8 double precision arithmetic operations simultaneously.

The performance boost that vectorization offers is a key to the Intel Xeon Phi coprocessor speed. Intel research

documents suggest that if the application is not bandwidth limited, the best use of Intel Xeon Phi is when most

operations are vector instructions. Very fortunately many algorithms for solving scientific and engineering problems

use extensively linear algebra containing vector operations.

Several examples of linear algebra SIMD operations are listed below

1. Sum of two vectors z[i]=x[i]+y[i]

2. Vector triad d[i]=a[i]+b[i]*c[i]

3. Saxpy y[i]=a*x[i]+y[i]

4. Dot product is SIMD followed by reduction a[1]*b[1] +a[2]*b[2]+...

5. Euclidean norm ∨1× ∨2= 𝑣𝑖
2

6. Matrix/vector product has two loops. The external loop can be parallelized. The internal loop is vectorizable.

7. Matrix/matrix product.

8. Matrix LU decomposition for solving general linear equations.

9. The Conjugate Gradient Method (CGM)

The Conjugate Gradient Method for solving linear equations with positive definite matrices is fully vectorizable. Every

iteration of CGM contains one matrix/vector product, two vector dot products and three Saxpy operations.

All these operations are vectorizable using SIMD instructions.There are several requirements for vectorizing a loop:

1. The number of loop iterations is countable

2. The loop consists of a single block without jumps or branches

3. The Block has single entry and exit

4. There are no function calls inside the block except the vectorized common mathematical functions such as sin,

cos, sqrt etc.

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of Advanced Research in Science,

Engineering and Technology

Vol. 4, Issue 9 , September 2017

Copyright to IJARSET www.ijarset.com 4569

A block satisfying these requirements is regarded as a single instruction and it is executed in parallel as SIMD. Below

is an example of SIMD block.

void example(double*a, double*b, double*c, double*d, int n){

int i;

 #pragmasimd

 for (i = 0; i < n; i++) {

 a[i] = c[i] * d[i];

b[i] = c[i] − d[i];

 }

}

Obstacles to vectorization include: noncontiguous data access in memory, indirect addressing, and data dependency.

REFERENCES.

[1]J.Jeffers and J.Reinders“Intel Xeon Phi Coprocessor High Performance Programming” Elsevier and Morgan Kaufmann 2013.

[2]B.Chapman, G. Jost and R. van der Pas, “Using OpenMP”, The MIT Press 2008.

[3]W.Gropp, E.Lusk and A.Skjellum, ”Using MPI”, The MIT Press 1994.
[4]A.D.Robinson “Parallel Programming with CilkPlus” Intel document 2012.

[5]J.Kowalik and T.Puzniakowski “Using OpenCL” IOS Press, 2012.

http://www.ijarset.com/

