

International Journal of Advanced Research in Science, **Engineering and Technology**

Vol. 4, Issue 10, October 2017

Differential Subordination and **Superordination for Multivalent Functions Involving a Generalized Differential Operator**

Waggas Galib Atshan, Najah Ali Jiben Al-Ziadi

Department of Mathematics, College of Computer Science and Information Technology, University of Al-Qadisiyah, Diwaniya, Iraq

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

ABSTRACT: In this paper, we deduce some subordination and superordination outcomes involving the generalized differential operator $D^{m,b}_{\lambda_1,\lambda_2,p}(a_1,b_1)$ for certain multivalent analytic functions in the open unit disk. These outcomes are applied to obtain differential sandwich theorems.

KEYWORDS: Analytic function; multivalent function; differential subordination; differential superordination; sandwich theorem; generalized differential operator.

INTRODUCTION I.

Let $\mathcal{H} = \mathcal{H}(U)$ symbolize the class of analytic functions in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ and let $\mathcal{H}[a, p]$ symbolize the subclass of the function $f \in \mathcal{H}$ of the shape: $f(z) = a + a_p z^p + a_{p+1} z^{p+1} + \cdots \quad (a \in \mathbb{C}; p \in \mathbb{N} = \{1, 2, \dots\}).$

$$f(z) = a + a_n z^p + a_{n+1} z^{p+1} + \dots \quad (a \in \mathbb{C}; p \in \mathbb{N} = \{1, 2, \dots\}).$$
 (1)

Also, let $\mathcal{A}(p)$ be the subclass of \mathcal{H} consisting of functions of the shape:

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} (p \in \mathbb{N} = \{1, 2, \dots\}).$$
 (2)

Let $f,g \in \mathcal{H}$, if there exists a Schwarz function w analytic in U with w(0) = 0 and |w(z)| < 1 ($z \in U$) such that f(z) = g(w(z)), then the function f is invited subordinate to g, or g is invited superordinate to f, In such a case we write f < g or f(z) < g(z) $(z \in U)$. If g is univalent in U, then f < g if and only if f(0) = g(0) and $f(U) \subset G$ g(U).

Let $p, h \in \mathcal{H}$ and $\varphi(r, s, t; z) : \mathbb{C}^{3} \times U \to \mathbb{C}$. If p and $\varphi(p(z), zp'(z), z^{2}p''(z); z)$ are univalent functions in Uand if p satisfies the second-order superordination

$$h(z) < \varphi(p(z), zp'(z), z^2p''(z); z),$$
 (3)

then p is invited a solution of the differential superordination (3). (If f is subordinate to g, then g is superordinate to f). An analytic function q is invited a subordinant of (3), if q < p for all the function p satisfying (3). An univalent subordinant \tilde{q} that satisfies $q < \tilde{q}$ for all the subordinants q of (3) is invited the best subordinant. Recently, Miller and Mocanu [1] gained conditions on the functions h, q and φ for which the following modulation holds:

$$h(z) \prec \varphi(p(z), zp'(z), z^2p''(z); z) \Rightarrow q(z) \prec p(z).$$

Now, (x_n) denotes the Pochhammer symbol defined by

$$(x_n) = \frac{\Gamma(x+n)}{\Gamma(x)} = \begin{cases} 1, & n=0, \\ x(x-1)\dots(x+n-1), & n=\{1,2,3,\dots\}. \end{cases}$$
 El-Yagubi and Darus [2] defined a generalized differential operator, as follows:

$$D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1}):\mathcal{A}(p)\to\mathcal{A}(p)$$

$$D_{\lambda_{1},\lambda_{2},p}^{m,b}(z)=z^{p}+\sum_{n=1}^{\infty}\left[\frac{p+(\lambda_{1}+\lambda_{2})n+b}{p+\lambda_{2}n+b}\right]^{m}\frac{(a_{1})_{n}...(a_{r})_{n}}{(b_{1})_{n}...(b_{s})_{n}}\frac{a_{p+n}z^{p+n}}{n!},$$
(4)

where $m, b, r, s \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \ \lambda_2 \ge \lambda_1 \ge 0$ and $a_i \in \mathbb{C}, b_a \in \mathbb{C} \setminus \{0, -1, -2, ...\}, (i = 1, ..., r, q = 1, ..., s), r \le s + 1$.

Copyright to IJARSET www.ijarset.com 4767

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 10, October 2017

It follows from (4) that

$$\lambda_1 z \left(D_{\lambda_1, \lambda_2, p}^{m,b}(a_1, b_1) f(z) \right)' = (p + \lambda_2 n + b) D_{\lambda_1, \lambda_2, p}^{m+1,b}(a_1, b_1) f(z) - (p + \lambda_2 n - p\lambda_1 + b) D_{\lambda_1, \lambda_2, p}^{m,b}(a_1, b_1) f(z). \tag{5}$$

It should be noted that the linear operator $D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)$ is a generalization of many other linear operators considered earlier. In particular:

- (1) For $\lambda_2 = b = 0$, the operator $D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)$ reduces to the operator was given by Selvaraj and Karthikeyan [3].
- (2) For m=0, the operator $D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)$ reduces to the operator was given by El-Ashwah [4].
- (3) For m = 0, and p = 1, the operator $D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)$ reduces to the well-known operator introduced by Dziok and Srivastava [5].
- (4) For m = 0, r = 2, s = 1 and p = 1, we gain the operator which was given by Hohlov [6].
- (5) For r=1, s=0, $a_1=1$, $\lambda_1=1$, $\lambda_2=b=0$ and p=1, we get the Salagean derivative operator [7].

The main object of the present paper is to find sufficient conditions for certain normalized analytic functions f to satisfy

$$q_1(z) < \left(\frac{z^p}{D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}\right)^{\mu} < q_2(z)$$

and

$$q_1(z) < \left(\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p}\right)^{\mu} < q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$.

II. PRELIMINARIES

In order to manifest our leading results, we require the following definition and lemmas.

Definition (1) [8]: Denote by Q the set of all functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where

$$E(f) = \left\{ \zeta \in \partial U: \lim_{z \to \zeta} f(z) = \infty \right\}$$
 (6)

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

Lemma (1)[1]: Let q be a convex univalent function in U and let $\alpha \in \mathbb{C}$, $\beta \in \mathbb{C} \setminus \{0\}$ with

$$Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\} > \max\left\{0, -Re\left(\frac{\alpha}{\beta}\right)\right\}.$$

If p is analytic in U and

$$\alpha p(z) + \beta z p'(z) < \alpha q(z) + \beta z q'(z), \tag{7}$$

then p < q and q is the best dominant of (7).

Lemma(2) [9]: Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$ when $w \in q(u)$. Set $Q(z) = zq'(z) \phi(q(z))$ and $h(z) = \theta(q(z)) + Q(z)$. Suppose that

(1) Q(z) is starlike univalent in U,

(2)
$$Re\left\{\frac{zh'(z)}{Q(z)}\right\} > 0$$
 for $z \in U$.

If p is analytic in U, with $p(0) = q(0), p(U) \subset D$ and

$$\theta(p(z)) + zp'(z)\phi(p(z)) < \theta(q(z)) + zq'(z)\phi(q(z)), \tag{8}$$

then p < q and q is the best dominant of (8).

Lemma (3) [1]: Let q be convex univalent in U and let $\beta \in \mathbb{C}$. Further assume that $Re(\beta) > 0$. If $p \in \mathcal{H}[q(0), 1] \cap Q$ and $p(z) + \beta zp'(z)$ is univalent in U, then

$$q(z) + \beta z q'(z) < p(z) + \beta z p'(z), \tag{9}$$

which implies that q < p and q is the best subordinant of (9).

International Journal of Advanced Research in Science, **Engineering and Technology**

Vol. 4, Issue 10, October 2017

Lemma(4) [9]: Let q be convex univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing q(U).

(1) $Re\left\{\frac{\theta'(q(z))}{\phi(a(z))}\right\} > 0 \text{ for } z \in U$

(2) $Q(z) = zq'(z)\phi(q(z))$ is starlike univalent in U.

If $p \in \mathcal{H}[q(0), 1] \cap Q$, with $p(U) \subset D$, $\theta(p(z)) + zp'(z)\phi(p(z))$ is univalent in U and

$$\theta(q(z)) + zq'(z)\phi(q(z)) < \phi(p(z)) + zp'(z)\phi(p(z)), \tag{10}$$

then q < p and q is the best subordinant of (10).

III. SUBORDINATION RESULTS

Theorem (1): Let q(z) be convex univalent in U with $q(0) = 1, \eta \in \mathbb{C}/\{0\}, \mu > 0$ and suppose that

$$Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\} > \max\left\{0, -Re\left(\frac{\mu(p + \lambda_2 n + b)}{\eta \lambda_1}\right)\right\}. \tag{11}$$

If

$$\nabla_{1}(z) = (1+\eta) \left(\frac{z^{p}}{D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)} \right)^{\mu} - \eta \left(\frac{z^{p}}{D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)} \right)^{\mu} \left(\frac{D_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z)}{D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)} \right)$$
(12)

and

$$\nabla_{1}(z) < q(z) + \frac{\eta \lambda_{1}}{\mu(p + \lambda_{2}n + b)} zq'(z), \tag{13}$$

then

$$\left(\frac{z^p}{D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}\right)^{\mu} \prec q(z) \tag{14}$$

and q(z) is the best dominant of (13).

Proof: Define the analytic function p(z) by

$$p(z) = \left(\frac{z^p}{D_{\lambda_1, \lambda_2, p}^{m, b}(a_1, b_1) f(z)}\right)^{\mu}$$
(15)

Differentiating (15) logarithmically with respect to z

$$\frac{zp'(z)}{p(z)} = \mu \left[p - \frac{z \left(D_{\lambda_1, \lambda_2, p}^{m, b}(a_1, b_1) f(z) \right)'}{D_{\lambda_1, \lambda_2, p}^{m, b}(a_1, b_1) f(z)} \right]. \tag{16}$$

Now, using the identity (5), we obtain the followin

$$\frac{zp'(z)}{p(z)} = \frac{\mu(p+\lambda_2 n+b)}{\lambda_1} \left(1 - \frac{D_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z)}{D_{\lambda_1,\lambda_2,p}^{m}(a_1,b_1)f(z)}\right).$$

Therefore,

$$\frac{\lambda_1}{\mu(p+\lambda_2n+b)}zp^{'}(z) = \left(\frac{z^p}{D^{m,b}_{\lambda_1,\lambda_2,p}(a_1,b_1)f(z)}\right)^{\mu} \left(1 - \frac{D^{m+1,b}_{\lambda_1,\lambda_2,p}(a_1,b_1)f(z)}{D^{m,b}_{\lambda_1,\lambda_2,p}(a_1,b_1)f(z)}\right).$$

Thus, the subordination (13) is equivalent to

$$p(z) + \frac{\eta \lambda_1}{\mu(p + \lambda_2 n + b)} z p'(z) < q(z) + \frac{\eta \lambda_1}{\mu(p + \lambda_2 n + b)} z q'(z).$$

Applying Lemma (1) with $\beta = \frac{\eta \lambda_1}{\mu(p + \lambda_2 n + b)}$ and $\alpha = 1$, we obtain (14). Putting $q(z) = \frac{1 + Az}{1 + Bz}$ (-1 \leq B < A \leq 1) in Theorem (1), we get the following result.

Corollary (1): Let $\eta \in \mathbb{C}/\{0\}$ and $-1 \le B < A \le 1$. Also, suppose that

$$Re\left(\frac{1-Bz}{1+Bz}\right) > \max\left\{0, -Re\left(\frac{\mu(p+\lambda_2n+b)}{\eta\lambda_1}\right)\right\}.$$

International Journal of Advanced Research in Science, **Engineering and Technology**

Vol. 4, Issue 10, October 2017

If $f \in \mathcal{A}(p)$ satisfies the following subordination condition:

$$\nabla_1(z) < \frac{1+Az}{1+Bz} + \frac{\eta \lambda_1}{\mu(p+\lambda_2 n+b)} \frac{(A-B)z}{(1+Bz)^2},$$

where $\nabla_1(z)$ given by (12), then

$$\left(\frac{z^p}{D^{m,b}_{\lambda_1,\lambda_2,p}(a_1,b_1)f(z)}\right)^{\mu} < \frac{1+Az}{1+Bz}$$

and the function $\frac{1+Az}{1+Bz}$ is the best dominant. Taking A=1 and B=-1 in Corollary (1), we get the following result.

Corollary (2): Let $\eta \in \mathbb{C}/\{0\}$ and Suppose that

$$Re\left(\frac{1+z}{1-z}\right) > \max\left\{0, -Re\left(\frac{\mu(p+\lambda_2n+b)}{\eta\lambda_1}\right)\right\}.$$

If $f \in \mathcal{A}(p)$ satisfies the following subordinat

$$\nabla_1(z) < \frac{1+z}{1-z} + \frac{\eta \lambda_1}{\mu(p+\lambda_2 n+b)} \frac{2z}{(1-z)^2}$$

where $\nabla_1(z)$ given by (12), then

$$\left(\frac{z^{p}}{D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)}\right)^{\mu} < \frac{1+z}{1-z}$$

and the function $\frac{1+z}{1-z}$ is the best dominant.

Theorem (2): Let q(z) be univalent in U with q(0) = 1, $q(z) \neq 0$ and $\frac{zq'(z)}{q(z)}$ is starlike in U, let $\mu, \eta \in \mathbb{C}/\{0\}$ and $u, v, \xi \in \mathbb{C}$. Let $f \in \mathcal{A}(p)$ and suppose that f and g satisfy the next two conditions: $\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p} \neq 0 \quad (z \in U, \ 0 \leq t \leq 1)$

$$\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p} \neq 0 \quad (z \in U, \ 0 \le t \le 1)$$

$$(17)$$

and

$$Re\left\{1 + \frac{v}{\eta}q(z) + \frac{2\xi}{\eta}[q(z)]^2 - \frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0$$
 (18)

$$\nabla_{2}(z) = u + v \left(\frac{t D_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z) + (1-t)D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)}{z^{p}} \right)^{\mu}$$

$$+ \xi \left(\frac{t D_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z) + (1-t)D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)}{z^{p}} \right)^{2\mu}$$

$$+ \eta \mu \left[\frac{t z \left(D_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z) \right) + (1-t)z \left(D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z) \right)}{t D_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z) + (1-t)D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)} - p \right].$$

$$(19)$$

and

$$\nabla_2(z) < u + vq(z) + \xi[q(z)]^2 + \eta \frac{zq'(z)}{q(z)},\tag{20}$$

then

$$\left(\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p}\right)^{\mu} < q(z), \tag{21}$$

and q is the best dominant of (20)

Proof: Define the analytic function *p*

$$p(z) = \left(\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p}\right)^{\mu}.$$
 (22)

Copyright to IJARSET www.ijarset.com 4770

International Journal of Advanced Research in Science, **Engineering and Technology**

Vol. 4, Issue 10, October 2017

Then p is analytic in U and p(0) = 1, differentiating (22) logarithmically with respect to z, we get

$$\frac{zp'(z)}{p(z)} = \mu \left[\frac{tz \left(D_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) \right)' + (1-t)z \left(D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z) \right)'}{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)} - p \right]. \tag{23}$$

By setting

$$\theta(w) = u + vw + \xi w^2 \text{ and } \phi(w) = \frac{\eta}{w}, \quad (w \in \mathbb{C} / \{0\}),$$

we see that $\theta(w)$ is analytic in \mathbb{C} , $\phi(w)$ is analytic in \mathbb{C} /{0} and that $\phi(w) \neq 0$, $w \in \mathbb{C}$ /{0}. Also, we get

$$Q(z) = zq'(z) \phi(q(z)) = \eta \frac{zq'(z)}{q(z)}, \quad (z \in U),$$

and

$$h(z) = \theta(q(z)) + Q(z) = u + vq(z) + \xi[q(z)]^2 + \eta \frac{zq'(z)}{q(z)}.$$

It is clear that Q(z) is starlike in U and, that

$$Re\frac{zh'(z)}{Q(z)} = Re\left\{1 + \frac{v}{\eta}q(z) + \frac{2\xi}{\eta}[q(z)]^2 - \frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0 \qquad (z \in U).$$

By making use of (23), the hypothesis (20) can be equivalently written as

$$\theta(p(z)) + zp'(z)\phi(p(z)) < \phi(q(z)) + zq'(z)\phi(q(z)),$$

thus, by applying Lemma (2), the proof is completed.

Theorem (3): Let q(z) be univalent in U with q(0) = 1, let $\mu, \eta \in \mathbb{C}/\{0\}$ and $v, \xi \in \mathbb{C}$. Let $f(z) \in \mathcal{A}(p)$ and suppose that f and g satisfy the next two conditions:

$$\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^n} \neq 0 \quad (z \in U, \ 0 \le t \le 1)$$
(24)

And

$$\frac{tD_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z) + (1-t)D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)}{z^{p}} \neq 0 \quad (z \in U, \ 0 \le t \le 1)$$

$$Re\left\{1 + \frac{zq^{''}(z)}{q^{'}(z)}\right\} > \max\left\{0, -Re\left(\frac{v}{\eta}\right)\right\}(z \in U). \tag{24}$$

$$\nabla_{3}(z) = \left(\frac{tD_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z) + (1-t)D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)}{z^{p}}\right)^{\mu} \times \left[v + \eta\mu\left(\frac{tz\left(D_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z)\right)^{'} + (1-t)\left(D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)\right)^{'}}{tD_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z) + (1-t)D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)}\right] + \xi$$
(26)

and

$$\nabla_3(z) < vq(z) + \eta z q'(z) + \xi, \tag{27}$$

then

$$\left(\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p}\right)^{\mu} < q(z), \tag{28}$$

and q is the best dominant of (27)

$$zp'(z) = \mu \left(\frac{tD_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z) + (1-t)D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)}{z^{p}} \right)^{\mu} \times \left[\frac{tz \left(D_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z) \right)' + (1-t)z \left(D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z) \right)'}{tD_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z) + (1-t)D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)} - p \right].$$

$$(29)$$

$$\theta(w) = vw + \xi$$
, $\phi(w) = \eta$, $(w \in \mathbb{C})$,

we see that $\theta(w)$, $\phi(w)$ are analytic in \mathbb{C} and that $\phi(w) \neq 0$. Also, we get

$$Q(z) = zq'(z) \phi(q(z)) = \eta zq'(z), \quad (z \in U),$$

International Journal of Advanced Research in Science, **Engineering and Technology**

Vol. 4, Issue 10, October 2017

and

$$h(z) = \theta(q(z)) + Q(z) = vq(z) + \eta zq'(z) + \xi \qquad (z \in U).$$

From the assumption (25) we see that Q(z) is starlike in U and, that

$$Re\frac{zh'(z)}{Q(z)} = Re\left\{\frac{v}{\eta} + \frac{zq''(z)}{q'(z)} + 1\right\} > 0 \qquad (z \in U),$$

and then, by using Lemma (2) we deduce that the subordination (27) implies p(z) < q(z), and the function q is the best dominant of (27).

IV. SUPERORDINATION RESULTS

Theorem (4): Let q be convex in U with $q(0) = 1, \mu > 0$ and $Re\{\eta\} > 0$. Let $f \in \mathcal{A}(p)$ satisfies

with
$$q(0) = 1, \mu > 0$$
 and $Re\{\eta\} > 0$. Let $f \in \left(\frac{z^p}{D_{\lambda_1, \lambda_2, p}^{m, b}(a_1, b_1) f(z)}\right)^{\mu} \in \mathcal{H}[q(0), 1] \cap Q$.

If the function $\nabla_1(z)$ given by (12) is univalent in

$$q(z) + \frac{\eta \lambda_1}{\mu(p + \lambda_2 n + b)} z q'(z) < \nabla_1(z), \tag{30}$$

then

$$q(z) < \left(\frac{z^p}{D_{\lambda_1, \lambda_2, p}^{m, b}(a_1, b_1) f(z)}\right)^{\mu}$$
 (31)

and q is the best subordinant of (30).

Proof: Define the analytic function p(z) by

$$p(z) = \left(\frac{z^p}{D_{\lambda_1, \lambda_2, p}^{m, b}(a_1, b_1) f(z)}\right)^{\mu}.$$
 (32)

Differentiating (32) logarithmically with respect to z,

$$\frac{zp'(z)}{p(z)} = \mu \left[p - \frac{z\left(D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)\right)'}{D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)} \right]. \tag{33}$$

After some computations and using the identity (5), from (33), we

$$\nabla_1(z) = p(z) + \frac{\eta \lambda_1}{\mu(p + \lambda_2 n + b)} z p'(z),$$

 $\nabla_1(z) = p(z) + \frac{\eta \lambda_1}{\mu(p + \lambda_2 n + b)} z p'(z),$ and now, by using Lemma (3), we get the desired result. Putting $q(z) = \frac{1+Az}{1+Bz} (-1 \le B < A \le 1)$ in Theorem (4), we get the following corollary.

Corollary (3): Let $-1 \le B < A \le 1$, $\mu > 0$ and $Re\{\eta\} > 0$. Also let

$$\left(\frac{z^p}{D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}\right)^{\mu} \in \mathcal{H}[q(0),1] \cap Q.$$

If the function $\nabla_1(z)$ given by (12) is univalent in U, and $f \in \mathcal{A}(p)$ satisfies the following superordination condition:

$$\frac{1+Az}{1+Bz} + \frac{\eta \lambda_1}{\mu(p+\lambda_2 n+b)} \frac{(A-B)z}{(1+Bz)^2} < \nabla_1(z),$$

then

$$\frac{1+Az}{1+Bz} < \left(\frac{z^p}{D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}\right)^{\mu}$$

and the function $\frac{1+Az}{1+Bz}$ is the best subordinant.

Theorem (5): Let q be convex univalent in U with q(0) = 1, $q(z) \neq 0$ and $\frac{zq'(z)}{q(z)}$ is starlike in U, let $\mu, \eta \in \mathbb{C}/\{0\}$ and $u, v, \xi \in \mathbb{C}$. Further assume that q satisfies

$$Re\left\{\left(v+2\xi q(z)\right)\frac{q(z)q'(z)}{\eta}\right\} > 0 \qquad (z \in U). \tag{34}$$

International Journal of Advanced Research in Science, **Engineering and Technology**

Vol. 4, Issue 10, October 2017

Let $f(z) \in \mathcal{A}(p)$ and suppose that f(z) satisfies the next conditions:

$$\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p} \neq 0 \quad (z \in U, \ 0 \le t \le 1)$$
(35)

and

$$\left(\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p}\right)^{\mu} \in \mathcal{H}[q(0),1] \cap Q. \tag{36}$$

If the function $\nabla_2(z)$ given by (19) is univalent in U, and

$$u + vq(z) + \xi[q(z)]^2 + \eta \frac{zq'(z)}{q(z)} < \nabla_2(z),$$
 (37)

then

$$q(z) < \left(\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p}\right)^{\mu},\tag{38}$$

and q is the best subordinant of (37)

Proof: Let the function p(z) be defined on U by (22). Then a computation shows that

$$\frac{zp'(z)}{p(z)} = \mu \left[\frac{tz \left(D_{\lambda_1, \lambda_2, p}^{m+1, b}(a_1, b_1) f(z) \right)' + (1 - t)z \left(D_{\lambda_1, \lambda_2, p}^{m, b}(a_1, b_1) f(z) \right)'}{t D_{\lambda_1, \lambda_2, p}^{m+1, b}(a_1, b_1) f(z) + (1 - t) D_{\lambda_1, \lambda_2, p}^{m, b}(a_1, b_1) f(z)} - p \right].$$
(39)

By setting

$$\theta(w) = u + vw + \xi w^2$$
 and $\phi(w) = \frac{\eta}{w}$, $(w \in \mathbb{C}/\{0\})$,

we see that $\theta(w)$ is analytic in \mathbb{C} , $\phi(w)$ is analytic in $\mathbb{C}/\{0\}$ and that $\phi(w) \neq 0$, $w \in \mathbb{C}/\{0\}$. Also, we get

$$Q(z) = zq'(z) \phi(q(z)) = \eta \frac{zq'(z)}{q(z)}, \quad (z \in U).$$

It is observe that Q(z) is starlike in U and, that

$$Re\frac{\theta'\left(q(z)\right)}{\phi\left(q(z)\right)} = Re\left\{\left(v + 2\xi q(z)\right)\frac{q(z)q'(z)}{\eta}\right\} > 0 \qquad (z \in U).$$

By making use of (39) the hypothesis (37) can be equivalently written as

$$\theta(q(z)) + zq'(z)\phi(q(z)) < \theta(p(z)) + zp'(z)\phi(p(z)),$$

thus, by applying Lemma (4), the proof is completed.

Using arguments similar to those of the proof of Theorem (3), and then by applying Lemma (4), we obtain the following result.

Theorem (6): Let q be convex in U with q(0) = 1, let $\mu, \eta \in \mathbb{C}/\{0\}$ and $v, \xi \in \mathbb{C}$ and $Re\left\{\frac{v}{n}q'(z)\right\} > 0$. Let $f \in \mathcal{A}(p)$

and suppose that
$$f(z)$$
 satisfies the next conditions:
$$\frac{tD_{\lambda_{1},\lambda_{2},p}^{m+1,b}(a_{1},b_{1})f(z) + (1-t)D_{\lambda_{1},\lambda_{2},p}^{m,b}(a_{1},b_{1})f(z)}{z^{p}} \neq 0 \quad (z \in U, \ 0 \le t \le 1)$$
 (40)

and

$$\left(\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p}\right)^{\mu} \in \mathcal{H}[q(0),1] \cap Q.$$
(41)

If the function $\nabla_3(z)$ given by (26) is univalent in U, and

$$vq(z) + \eta z q'(z) + \xi < \nabla_3(z), \tag{42}$$

$$vq(z) + \eta z q(z) + \xi < \nabla_3(z), \tag{42}$$

$$q(z) < \left(\frac{t D_{\lambda_1, \lambda_2, p}^{m+1, b}(a_1, b_1) f(z) + (1-t) D_{\lambda_1, \lambda_2, p}^{m, b}(a_1, b_1) f(z)}{z^p}\right)^{\mu}$$

and q is the best subordinant of (42)

V. SANDWICH RESULTS

By combining Theorem (1) with Theorem (4), we obtain the following sandwich theorem:

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 10, October 2017

Theorem (7): Let q_1 and q_2 be two convex functions in $U, q_1(0) = q_2(0) = 1$ and q_2 satisfies (11), $\mu > 0, \eta \in \mathbb{C}$ with $Re\{\eta\} > 0$. If $f \in \mathcal{A}(p)$ such that $\left(\frac{z^p}{D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}\right)^{\mu} \in \mathcal{H}[1,1] \cap Q, \nabla_1(z)$ is univalent in U and satisfies

$$q_{1}(z) + \frac{\eta \lambda_{1}}{\mu(p + \lambda_{2}n + b)} z q_{1}^{'}(z) < \nabla_{1}(z) < q_{2}(z) + \frac{\eta \lambda_{1}}{\mu(p + \lambda_{2}n + b)} z q_{2}^{'}(z), \tag{44}$$

where $\nabla_1(z)$ is given by (12), then

$$q_1(z) < \left(\frac{z^p}{D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}\right)^{\mu} < q_2(z),$$

where q_1 and q_2 are, respectively, the best subordinant and the best dominant of (44). By combining Theorem (2) with Theorem (5), we obtain the following sandwich theorem:

Theorem (8): Let q_i be two convex functions in U, such that $q_i(0) = 1$, $q_i(z) \neq 0$ and $\frac{zq_i'(z)}{q_i(z)}$ (i = 1,2) is starlike in U, let $\mu, \eta \in \mathbb{C}/\{0\}$ and $u, v, \xi \in \mathbb{C}$. Further assume that q_1 satisfies (34), and q_2 satisfies (18). Let $f \in \mathcal{A}(p)$ and suppose that f satisfies the next conditions:

$$\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z)+(1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p}\neq 0 \quad (z\in U,\ 0\leq t\leq 1),$$

and

$$\left(\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z)+(1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p}\right)^{\mu}\in\mathcal{H}[1,1]\cap Q.$$

If the function $\nabla_2(z)$ given by (19) is univalent in U, and

$$u + vq_1(z) + \xi[q_1(z)]^2 + \eta \frac{zq_1'(z)}{q_1(z)} < \nabla_2(z) < u + vq_2(z) + \xi[q_2(z)]^2 + \eta \frac{zq_2'(z)}{q_2(z)}, \tag{45}$$

then

$$q_1(z) \prec \left(\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p}\right)^{\mu} \prec q_2(z),$$

where q_1 and q_2 are, respectively, the best subordinant and the best dominant of (45).

By combining Theorem (3) with Theorem (6), we obtain the following sandwich theorem:

Theorem (9): Let q_1 and q_2 be two convex functions in U, with $q_1(0) = q_2(0) = 1$, let $\mu, \eta \in \mathbb{C}/\{0\}$ and $v, \xi \in \mathbb{C}$ with $Re\left\{\frac{v}{\eta}q_1^{'}(z)\right\} > 0$ and q_2 satisfies (25). Let $f \in \mathcal{A}(p)$ and suppose that f satisfies the next conditions:

$$\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z) + (1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p} \neq 0 \quad (z \in U, \ 0 \le t \le 1),$$

and

$$\left(\frac{tD_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1)f(z)+(1-t)D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1)f(z)}{z^p}\right)^{\mu}\in\mathcal{H}[1,1]\cap Q.$$

If the function $\nabla_3(z)$ given by (26) is univalent in U, and

$$vq_1(z) + \eta z q_1'(z) + \xi < \nabla_3(z) < vq_2(z) + \eta z q_2'(z) + \xi, \tag{46}$$

then

$$q_1(z) \prec \left(\frac{t D_{\lambda_1,\lambda_2,p}^{m+1,b}(a_1,b_1) f(z) + (1-t) D_{\lambda_1,\lambda_2,p}^{m,b}(a_1,b_1) f(z)}{z^p}\right)^{\mu} \prec q_2(z),$$

where q_1 and q_2 are, respectively, the best subordinant and the best dominant of (46).

REFERENCES

[1] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables, 48(10), 2003, pp. 815-826.

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 10, October 2017

- [2] E. El-Yagubi and M. Darus, A study on a class of p-valent functions associated with generalized hypergeometric functions, VladikavkazskiiMatematicheskiiZhurnal, 17(1), 2015, pp: 31-38.
- [3] C. Selvaraj and K. R. Karthikeyan, Differential subordination and superordination for certain subclasses of analytic functions, Far East Journal of Mathematical Sciences, 29(2), 2008, pp. 419-430.
- [4] R. M. El-Ashwah, Majorization properties for subclass of analytic p-valent functions defined by the generalized hypergeometric function, Tamsui Oxford Journal of Mathematical Sciences, 28(4), 2012, pp. 395-405.
- [5] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Applied Mathematics and Computation, 103(1), 1999, pp: 1-13.
- [6] J. E. Hohlov, Operators and operations on the class of univalent functions, IzvestiyaVysshikhUchebnykhZavedeniiMatematika, 10(197), 1978, pp. 83-89.
- [7] G. S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol.1013, Springer, Berlin,1983, 1981, pp. 362-372.
- [8] S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- [9] T. Bulboacă, Classes of first order differential superordinations, demonstration mathematica, 35(2), 2002, pp. 287-292.

Copyright to IJARSET <u>www.ijarset.com</u> 4775