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ABSTRACT: In this paper, based on Hamilton-Ostrogradsky’s variation principle the equations of motion of 

geometrically nonlinear problem of rods with natural boundary and initial conditions are derived. Based on Finite 

difference method of the second order of accuracy, a system of equations of motion of the rods is solved. An algorithm 

for solving the formulated problem is given. 
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I.INTRODUCTION. 

 

An intensive development of nonlinear theory of elasticity has begun in the 40s of the 20th century. Since 

then, the scope of nonlinear theory of elasticity is constantly expanding. Not only rubber-like and polymer materials 

have become an object of study in modern mechanics of solids, but also the tissues of living organisms. The walls of 

blood vessels, cell membranes, protein molecules are prone to strong deformation and to describe them the 

considerably nonlinear models are required. 

The problem of strong bending of a prismatic beam by end moments is a nonlinear version of one of Saint-

Venant problems [1]. The solution of the other nonlinear problem - the problem of torsion was given by L.M. Zubov 

[2]. Within the framework of linear theory of elasticity the problem of bending of prismatic body was solved by Saint-

Venant about 170 years ago. Since then, Saint Venant problem of bending was generalized in different directions. 

However, these generalizations do not go beyond the small deformations. An exception is the nonlinear plane problem 

of pure bending of elastic strip; its solution is given in the work by A.I. Lurie [3,4]. 

At present stage of development of the mechanics of continuous media the interest to the problems of 

nonlinear theory of elasticity is explained by several reasons. Firstly, in practice, different bodies experience finite 

deformation, where materials exhibit substantial elastic properties. Their behavior is very different from the one 

predicted by linear theory. Proper accounting of non-linearity is particularly important in calculating the products made 

of elastomeric, plastic and other materials. Secondly, a number of phenomena, experimentally observed at certain 

strains (e.g., torsion) can not be described theoretically, retaining in the solution only linear terms relative to the 

gradient of displacement. 

Thirdly, new materials, and non-linear behavior of known ones require the development of new mathematical 

models, which adequately describe their properties. Therefore, the solution (in the framework of nonlinear theory of 

elasticity) of the problems for certain basic experiments (tension, torsion, bending, etc.) using various determinant 

relationships allows us to check the suitability of the latter, to experimentally determine their characteristics at high 

strains, as well as to compare the behavior of various materials. 

The building of the adequate mathematical models of these materials with full account of the nonlinearity 

should be based primarily on modeling of classic experiments, and, consequently, on the solution of fundamental 

problems of the theory of elasticity, describing a simple deformation of bodies (tension, torsion, bending, etc.). At the 

same time the solution of boundary value problems of the nonlinear theory of elasticity in most cases is difficult 

because the elastic potentials used present quite complex expressions, reducing to essentially nonlinear equations; their 

solution can’t be found in analytical form.  
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At the same time, the majority of the studied nonlinear elastic potentials present a rather bulky expressions, 

which make analytical derivation of the boundary value problem of equilibrium even in the cases of simple loading an 

extremely time-consuming one and not always reliable. In addition, the change of the specific potential energy function 

often leads to the need to derive all the equations afresh. However, the process of derivation of boundary value 

problems of equilibrium is strictly algorithmic. 

The issues of development in the field of algorithmization of the theory of calculation and automation of 

solutions of problems of nonlinear elastic elements of structures were studied by V.K. Kabulov [5-7], A.V. Tolok [8] T. 

Buriev [9], K.Sh. Babamuratov [10], F.B. Badalov [11] B. Kurmanbaev [12], T. Yuldashev [13], Sh.A. Nazirov [14-18] 

and their followers. 

As is known, the calculation of thin-walled rods is much more complicated than solid ones. Thin-walled 

structure best suit to the requirements of economic feasibility, with adequate strength and rigidity. This explains their 

wide use in various fields of mechanical engineering, construction, aviation, etc. 

A unified theory of thin-walled rods was proposed in the works of V.Z.Vlasov [19], G.Yu.Dzhanelidze [20] 

and V.K. Kabulov [5]. At present practice requirements lead to the need to study the deformation of the elements 

considering their geometric nonlinearity. 

Applied theory of rods vibrations is built on the basis of a number of static and kinematic hypotheses relative 

to the law of distribution of displacements, strains and stresses in the sections of the bar. 

Displacements of the rod points under joint longitudinal, transverse and torsional vibrations are represented in 

the form [5]: 
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where  is an angle of torsion,  wvu ,, displacements of a middle line of the rod, 
21 ,  the angles of sections 

rotation under pure bending, 
21 ,  the angles of transverse shear, 321 ,, uuu the components of displacement 

vectors, x,y,zspatial variables, (y,z)– Saint-Venant function of torsion, defined from  

.,02 mzlyn    

The first relation is presented in the form: 

2211211 ),,(),,(),,(  zyxazyxazyxyzuu     

where а1=1(z)z, a2=2(y)y, x  is a linear torsion. 

When building an applied theory, the transition from the study of vibrations of three-dimensional body to one-

dimensional body has a crucial importance. A complete solution of this problem can be derived from a discrete-

continuum method developed V.Z.Vlasov, G.Yu.Dzhanelidze and V.K.Kabulov. 

 Task Definition. Based on Vlasov-Dzhanelidze-Kabulov refined theory the displacements of the rod are 

taken in the form [5]: 
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Here the sought for functions are reduced to twelve ( 212121 .,,,,,,,,,, aиawvu  ) and an 

external loading is not restricted; the functions 2121 ,,,,,,,, wvu  are the functions along spatial variables х 

and t.  

The theory of rods can be generalized in two directions. First of all the coordinate functions can be regarded as 

unknown, and to determine them based on Hamilton-Ostrogradski principle it is necessary to derive the corresponding 

differential equation. Such a theory is conventionally called a "one-dimensional" one. 

Another way of generalizing the vibrations of rods leads to the solution of a mathematical problem of the 

theory of elasticity with strict regard to the boundary conditions. 

In a particular case, consider the vibrations of the rod form: 
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.),,,(,),,,( 31 wtzyxuzutzyxu            (2) 

where wu, are the displacements of a middle line of the rod, an angle of section rotation under pure bending, 

31,uu the components of displacements vector. Here the sought for functions u, w, are the functions along the 

spatial variables х and t, and an external loading is not restricted. 

In general form Hamilton- Ostrogradsky’s variation principle is written [5,14-18,21-25]: 

 ;0)( 
t

dtAK        (3) 

where К, П–are kinetic and potential energy; А–a work of internal volume and surface forces. 

Determination of the variation of kinetic energy. In calculation of the variation of kinetic energy the 

following relation is used  
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here ρ–is a specific mass density of the material of a body (assumed to be constant). 

The operation of integration is conducted by parts 
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Substituting the expressions 31,uu  from (2) in the variation of kinetic energy (4) and opening brackets under the sign 

of the variation after the integration operation on the cross sections of the rod, and introducing the designations, one 

obtains [1418,21-25]: 
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A. Determination of the variation of potential energy.  

 

 For the variation of potential energy one obtains: 
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Form the Cauchy relations [5,21-22,26]: 
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Stress components are taken as [5, 21-22, 26]: 
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where  Е - is elasticity modulus, G - shear modulus,  - Poisson’s ratio. 

 According to Cauchy relation (7) and considering that 03  zu , the variations of potential energy (6) is 

presented in the form 
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In (9) similar items are given: 

dvdt
x

u

x

u

z

u

x

u

x

u

z

u

x

u
dt

vtt

































































 

3
11

3
13

1
13

1
13

1
13

1
11

1
11  .(10) 

Substituting the expressions of displacements 1u  and 3u  from (2) under the sign of the variation in the 

variation of potential energy (10), one obtains 
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The operation of integration is conducted by parts. Then the variation of potential energy (11) has the form 




















































































































11
1

1113
1

11
1

1111

3

13

13
1

11
1

1113
1

11
1

11





z
x

u
z

x
u

z

u

x

u

x
dzdyw

x

u

z
z

u
z

x

u
zu

z

u

x

u
dt

v

x

zyt

.11

3

1313
1

1313
1 dtdvw

x

u

xx

u
z

z

u




















































    (12) 

In (12) the integral in the section of the rod is marked out and one obtains 
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In (13) the expressions are calculated and introducing the designations one obtains 
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where 
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From (13) an expression (14) is introduced: 
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For nonlinear parts of the variation of potential energy the following designations are introduced: 
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The variations of potential energy with introduced designations have the form: 

         3231 RMwRQuRNdt yx
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Determination of the variation of work of external forces.  Consider the variations of the work of external 

forces: 
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here 31, FF  - are the components of volume forces, per a volume unit, 31,qq  surface forces, respectively, per an area 

unit of a rod surface, 31, – boundary stresses. 

In the variations of the work of external forces (16) the expressions of displacements u1 and u3 are introduced 

from (2): 
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Opening brackets and marking out the integral in the section of the rod, the variation and the work of external 

forces (18) have the form: 
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B. Derivation of determinant equations of spatially loaded rods.  

 

Results obtained for the variation of kinetic energy (5), potential energy (16) and the work of external forces (19) are 

introduced into Hamilton-Ostrogradsky’s variation principle (3) and derive the system of differential equations with 

corresponding initial and boundary value conditions. 
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Initial conditions: 
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Boundary conditions: 
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Based on Hooke’s law the expression yx MQN ,, 3 in displacements is obtained from the relationship (2) 
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Now define the nonlinear part of the equations  
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4321 ,,,,,  into the equations (20) 
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C. Solution Algorithm.  

Introduce dimensionless parameters: xlxtttwawuau  ,,, 0 . Considering introduced 

dimensionless parameters, the system of equations (23), boundary (24) and initial conditions (25) have the form: 
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Boundary conditions: 
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The system of equations (26), boundary (27) and initial conditions (28) is divided by 
2

2

l

a
EF  and the 

following expression 
E

lt
22

0   is introduced. 
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Boundary conditions: 
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The system of equations of motion: 
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Boundary conditions: 
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Initial conditions: 
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The solutions of differential equations of motion (29) with corresponding initial (31) and boundary conditions 

(30), obtained from the variation principle in a scalar form, are quite difficult. Therefore, the system of differential 

equations, initial and boundary conditions can be represented in vector form. 

Introduce the vectors 
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    (32) 

The system of equations (29), initial conditions (31) and boundary conditions (30) with introduced elements of 

the matrix are written in vector form 
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Here the elements of the matrix М from the system of equations have the following expressions: 
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In initial conditions the elements of the matrix have the opposite signs relative to the elements of the matrix of the 

system of equations  
.... уcун MM   

At k=1 a linear problem is solved, this is a zero approximation of the problem 
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At k=2 nonlinear items of a given equation are solved. This is the first approximation of the solution, further the 

process of iteration occurs 

.
1


k

ij

k

ij UU


 

 When constructing the computing algorithm for the system of differential equations (36) with initial (37) and 

boundary conditions (38), the central finite-difference correlations of the Finite difference method with the second 

order of accuracy is applied [27,28]: 
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 Introducing (39) into (36) one obtains: 

      .0
2

22 ,,1,1,1,,121,,1,2
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 (40) 

Divide the equation (40) by 2
M .  
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  (41) 

Reduce the similar items 
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Introduce the designations: 
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       (42) 

Introducing (42) into (41), one obtains 

.0
~~~~

,1,,1,,11,   jijijijijiji FUUCUBUAU


    

The last equation is solved relative to the vector of functions 
1, jiU


. 
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At iij  ,0 consider the initial conditions  
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From initial conditions (44) define the vector of functions 1,iU
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      (45) 

At iij  ,0  equation (43) is solved 
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Reduce the similar items and the result is divided by 2. 
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With initial conditions (44), equation (46) has a form 
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   (47) 

At iij  ,1  equation (43) with initial conditions has the form: 
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0

0,1,11,1,12,
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   (48) 

Consider boundary conditions (38) at 0i , approximate by a step forward  
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      (49) 

Introducing (49) into (38) one obtains: 
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Reduce the similar items and solve relative to jU ,0
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at 1,  ijj  equation (43) is solved 
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Introduce the designations:  
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With the introduced designations (54) equation (53) has the form:  

jjjjjj FPUUBUAU ,1,01,1,21,111,1
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    (55) 

At Nijj  ,  consider boundary conditions (39). Here the derivatives 
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 are approximated by a step 
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Entering this equation into (38), one obtains: 
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Reduce the similar items  
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Equation (57) is solved relative to the vector of the function 
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At 1,  Nijj equation (43) gas the form: 
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  jNjNjN

jNjNjN

FFDB
h

A
CU

U
h

A
B

h

A
CBU

h

A
B

h

A
CAU

,1,

1

1,1

,1

1

,2

1

1,1

~

2

3~

2

4

2

3~~

22

3~~

















































































 (59) 

Introduce the designations  

;
22

3~~
1

1
h

A
B

h

A
CAA 












;
22

3~
4

~
1

1
h

A
B

h

A
CBB 












 

  ;
2

3~
,

1

, jNjN FDB
h

A
CP 















      (60) 

With the introduced designations (60) equation (59) has the form: 

jNjNjNjNjNjN FPUUBUAU ,1,1,1,11,211,1

~
 


   (61) 

Equation (43) is written with 1,0  ij  

0,10,01,10,210,111,1

~
FUUBUAU  


 

With correlation (45). 

0,10,0

0

0,1

1

1,10,210,111,1

~
2 FUMUUBUAU  




  

Reduce the similar items and with initial conditions (43) 

 0,10,0

0

0,1

10

0,210,111,1

~
2

2

1
FUMUBUAU   

     (62) 

At 1,1  ij  equation (43) has the form: 

1,10,11,21,11,02,1

~~~~
FUUCUBUAU 


 

With initial conditions (44), equation (55) has the form: 

    1,11,0

0

0,11,211,112,1

~
FUUBUAU 


  (63) 
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At 0,1  jNi  equation (43) is written in the form: 

0,11,10,0,10,21,1

~~~~
  NNNNNN FUUCUBUAU


 

With initial conditions (44) equation (61) has the form  

0,10,1,10,110,211,1

~
  NNNNNN FPUUBUAU


 

With correlation (45), reduce the similar items. Тhe last equation has the form. 

 0,10,

0

0,1

1
0,1

0

10,2
0

11,1

~
2

2

1



  NNNNNN FUAUBUAU


    (64) 

At 1,1  jNi  consider equation (43) 

1,10,11,1,11,22,1

~~~~
  NNNNNN FUUCUBUAU


 

Here consider initial conditions (44). Equation (61) has the form 

1,11,1,1
0

1,1
0

11,212,1

~
  NNNNNN FPUUBUAU


   (65) 

 

                   II. CONCLUSION 
 

The order of formulated solution of the problem 

0. 1k 00 E  

1. :0,1  ji  equation (62) is solved 

2. :0,  jii  equation (47) is solved 

3. :0,1  jNi  equation (64) is solved 

4. :1,1  ji  equation (63) is solved 

5. :1,  jii  equation (48) is solved 

6. :1,1  jNi  equation (65) is solved 

7. :,1 jji   equation (55) is solved 

8. :, jjii   equation (43) is solved 

9. :,1 jjNi   equation (61) is solved 

10. 1 kk  

1) 1k ; 

2) :0,1  ji  equation (62) is solved 

3) 1 ii ; 

4) ,2 Ni  If conditions are not satisfied to proceed to point 2, otherwise – to point 3; 

5) :1,1  ji  equation (48) is solved; 

6) 1 ii ; 

7) .2 Ni  If conditions are not satisfied to proceed to point 5, otherwise – to point 6; 

8) :1,1  jNi  equation (65) is solved; 

9) :,1 jji   equation (55) is solved; 

10) 1 ii ; 

11) .2 Ni  If conditions are not satisfied to proceed to point 9, otherwise – to point 10; 

12) :,1 jjNi   equation (61) is solved; 
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13) 1 jj ; 

14) .
~

Mj   If conditions are not satisfied to proceed to point 12, otherwise – to point 8; 

15) 1 kk ; 

16) Calculation of nonlinear items; 

17)  Proceed to point 1; 

18) .1  k

ji

k

ji UU


 If conditions are satisfied to proceed to point 19, otherwise – to point 1n ; 

19) The end. 
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