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ABSTRACT: In this paper, based on Hamilton-Ostrogradsky’s variation principle the equations of motion of
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I.LINTRODUCTION.

An intensive development of nonlinear theory of elasticity has begun in the 40s of the 20th century. Since
then, the scope of nonlinear theory of elasticity is constantly expanding. Not only rubber-like and polymer materials
have become an object of study in modern mechanics of solids, but also the tissues of living organisms. The walls of
blood vessels, cell membranes, protein molecules are prone to strong deformation and to describe them the
considerably nonlinear models are required.

The problem of strong bending of a prismatic beam by end moments is a nonlinear version of one of Saint-
Venant problems [1]. The solution of the other nonlinear problem - the problem of torsion was given by L.M. Zubov
[2]. Within the framework of linear theory of elasticity the problem of bending of prismatic body was solved by Saint-
Venant about 170 years ago. Since then, Saint Venant problem of bending was generalized in different directions.
However, these generalizations do not go beyond the small deformations. An exception is the nonlinear plane problem
of pure bending of elastic strip; its solution is given in the work by A.l. Lurie [3,4].

At present stage of development of the mechanics of continuous media the interest to the problems of
nonlinear theory of elasticity is explained by several reasons. Firstly, in practice, different bodies experience finite
deformation, where materials exhibit substantial elastic properties. Their behavior is very different from the one
predicted by linear theory. Proper accounting of non-linearity is particularly important in calculating the products made
of elastomeric, plastic and other materials. Secondly, a number of phenomena, experimentally observed at certain
strains (e.g., torsion) can not be described theoretically, retaining in the solution only linear terms relative to the
gradient of displacement.

Thirdly, new materials, and non-linear behavior of known ones require the development of new mathematical
models, which adequately describe their properties. Therefore, the solution (in the framework of nonlinear theory of
elasticity) of the problems for certain basic experiments (tension, torsion, bending, etc.) using various determinant
relationships allows us to check the suitability of the latter, to experimentally determine their characteristics at high
strains, as well as to compare the behavior of various materials.

The building of the adequate mathematical models of these materials with full account of the nonlinearity
should be based primarily on modeling of classic experiments, and, consequently, on the solution of fundamental
problems of the theory of elasticity, describing a simple deformation of bodies (tension, torsion, bending, etc.). At the
same time the solution of boundary value problems of the nonlinear theory of elasticity in most cases is difficult
because the elastic potentials used present quite complex expressions, reducing to essentially nonlinear equations; their
solution can’t be found in analytical form.
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At the same time, the majority of the studied nonlinear elastic potentials present a rather bulky expressions,
which make analytical derivation of the boundary value problem of equilibrium even in the cases of simple loading an
extremely time-consuming one and not always reliable. In addition, the change of the specific potential energy function
often leads to the need to derive all the equations afresh. However, the process of derivation of boundary value
problems of equilibrium is strictly algorithmic.

The issues of development in the field of algorithmization of the theory of calculation and automation of
solutions of problems of nonlinear elastic elements of structures were studied by V.K. Kabulov [5-7], A.V. Tolok [8] T.
Buriev [9], K.Sh. Babamuratov [10], F.B. Badalov [11] B. Kurmanbaev [12], T. Yuldashev [13], Sh.A. Nazirov [14-18]
and their followers.

As is known, the calculation of thin-walled rods is much more complicated than solid ones. Thin-walled
structure best suit to the requirements of economic feasibility, with adequate strength and rigidity. This explains their
wide use in various fields of mechanical engineering, construction, aviation, etc.

A unified theory of thin-walled rods was proposed in the works of V.Z.Vlasov [19], G.Yu.Dzhanelidze [20]
and V.K. Kabulov [5]. At present practice requirements lead to the need to study the deformation of the elements
considering their geometric nonlinearity.

Applied theory of rods vibrations is built on the basis of a number of static and kinematic hypotheses relative
to the law of distribution of displacements, strains and stresses in the sections of the bar.

Displacements of the rod points under joint longitudinal, transverse and torsional vibrations are represented in
the form [5]:

ov ow 00
u(x,y,z,t)=u _&Z_&y‘F(P(y’ Z)&'H//l(z)ﬁl +y,(Y) B,

u,(x,y,z,t)=v-1z60, us(x,y,z,t) =w+yée

Assuming that oV/OX = o, + B, OW/OX = a, + f3,,
where @ —is an angle of torsion, U,V, W —displacements of a middle line of the rod, a,,a,— the angles of sections

rotation under pure bending, f,,/3,— the angles of transverse shear, U;,U,,U;~the components of displacement
vectors, x,y,z—spatial variables, ¢(y,z)— Saint-Venant function of torsion, defined from
Vip=0, op/on=Ily—mz.
The first relation is presented in the form:
U =U-Za, —Ya, +@(X,Y,2)9+a,(X Y, 2) B +a,(X,Y,2) 5,

where a;=y4(2)-2, a,=ys(y)-y, 3 # 00/0x —is a linear torsion.

When building an applied theory, the transition from the study of vibrations of three-dimensional body to one-
dimensional body has a crucial importance. A complete solution of this problem can be derived from a discrete-
continuum method developed V.Z.Vlasov, G.Yu.Dzhanelidze and V.K.Kabulov.

Task Definition. Based on Vlasov-Dzhanelidze-Kabulov refined theory the displacements of the rod are
taken in the form [5]:

U (X,y,2) =u—za, —ya, +o(X,y,2)3+a,(X,y,2) B, + a, (X, Y, Z)ﬂz}

1
u,(x,y,z)=v+z0, Us(X,y,z) =w-yé. M

Here the sought for functions are reduced to twelve (U,V,W,@,$,0,a,,a,,,,5,,8, u a,) and an

external loading is not restricted; the functions u,v,w, $, 6, a,,a,, ﬁl,ﬁz are the functions along spatial variables x

and t.

The theory of rods can be generalized in two directions. First of all the coordinate functions can be regarded as
unknown, and to determine them based on Hamilton-Ostrogradski principle it is necessary to derive the corresponding
differential equation. Such a theory is conventionally called a "one-dimensional™ one.

Another way of generalizing the vibrations of rods leads to the solution of a mathematical problem of the
theory of elasticity with strict regard to the boundary conditions.

In a particular case, consider the vibrations of the rod form:
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u(xy,z,t) =u—za, Uy (xy,zt)=w} @)
where U, W —are the displacements of a middle line of the rod, a—an angle of section rotation under pure bending,

U;, Uz —the components of displacements vector. Here the sought for functions u, w,« are the functions along the

spatial variables x and t, and an external loading is not restricted.
In general form Hamilton- Ostrogradsky’s variation principle is written [5,14-18,21-25]:

j(aK — T+ 6A)dt =0; @3)
t
where K, I1-are kinetic and potential energy; A—a work of internal volume and surface forces.
Determination of the variation of Kinetic energy. In calculation of the variation of kinetic energy the
following relation is used

ot

here p—is a specific mass density of the material of a body (assumed to be constant).
The operation of integration is conducted by parts

ou, o( au o( ou
!5Kdt=_[( atéU Sa‘us]dvt—! !.{at[patl)éul—l—at(pat?’j&s}dvdt @)

v

ou, .ou ou, .ou
S Kdt = Ls—t+ 35— dvdt
J ”[’)é‘t a P atj

Substituting the expressions Uy, U3 from (2) in the variation of kinetic energy (4) and opening brackets under the sign

of the variation after the integration operation on the cross sections of the rod, and introducing the designations, one
obtains [14-18,21-25]:

jéKdt:j {{F%U—S a—“}a‘u—[s Ay a—a}é'alJrF%éW}dx

+
ot Yo ) at t
2 2
+j PO s T%5i]s, 28y T RO o, (5)
f ot? Yoot Y ot? ’oat? ot
where F = _[ j j I zdzdy; J, I I z%dzdy.
y 2z y z
A Determlnatlon of the variation of potential energy.
For the variation of potential energy one obtains:
j.éHdt:j 1(0115511 +0,,08,, Kvdt. (6)
t t v
Form the Cauchy relations [5,21-22,26]:
ou, ou, ou, : ou; oOu, 0Ou, ou; Ou, ou,
=y =—14= + =1 | =8y =2Ypy=—+—+——+——. (7
=T =y {[ 6x] ( X j BT T TS T T o ox a
Stress components are taken as [5, 21-22, 26]:

o —ig +—H elo —Lg T e=¢&, +&5,0 M
11 1+ u 11 1— Zﬂ 113 2(1+ ,U) 137 11 3311 T (1 2,Ll)(l+ ,U) 11’
where E - is elasticity modulus, G - shear modulus, /£ - Poisson’s ratio.

(®)

According to Cauchy relation (7) and considering that 6u3/62 =0, the variations of potential energy (6) is
presented in the form
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[orde={ | 611(58u1+8u158u u 5a“j
" LY OX OX OX OX OX

+0, 5aul + 58u3 L 56u1 o, LS ou, Hdvdt

)

oz OX OX 07 01 oX
In (9) similar items are given:

' a au au au au au au
Jdt = [a +—o,+—0 j&l{a +—10, jb‘%(a +—o, j&g’}dvdt .(10)
! ”_“ax“az“ax la S a P e )

Substituting the expressions of displacements U; and Us from (2) under the sign of the variation in the
variation of potential energy (10), one obtains

ou au 0 ou ou ow
j Aldt = I I KO’M - &1 o+ 6721 O'lgj(? & (u-z0) —[0'13 - &1 0'13j5a - [0'13 - 67)(3 0'11]5 aX}dv dt.

t t v
Here similar items are given:

au ou ou ou oa
j aldt = j j KGM 821 013j5 P (anz + a—xl oL+ 8721 0132)6 x +

+ [— Oy~ ?;(1 613j501 + [013 + 5;(3 O'llj5 g\ﬂdvdt

The operation of integration is conducted by parts. Then the variation of potential energy (11) has the form

ou ou ou ou
orldt = O+ —0,. +—~0,, |MU—| 20, +—20.. +—~20., |da +
'!‘ {_!: 'Zf |:( 11 ax 11 az 13 j ( 11 8X 11 az 13 j

ou 0 ou ou 0 ou
+[O'13 +8_X30'11J5W}d2d)’|x _J- {&(O}l +a—XlO'11 +8—210'13jﬁJ —{&(2011 +a—xle'11 +

v

11)

ou ou 0 ou
+6—212(713j +(— O3 —8—;0'13j:|56¥ +&[O’13 +6—X30'11)aNj|dV}dt (12)
In (12) the integral in the section of the rod is marked out and one obtains
ou ou ou
Adt = o +—Lt0o, |- 20, +—10, +— 10, | +
frte = 4] J [ B+ B - B+ B

+| 043 +aai)(‘°’all)éw}dzdy

]

0 au ou
X —{j h j E (0'11 +8—X1611 +a—zlalaﬂdzdy}aj _
0 ou ou ou
{&(qlz - 510'112 + 8—210'132 - [0'13 + 510'13 Hdzdy}é‘a +

0 ou ]
J{j _[ {&(013+6—X3aﬂj dzdy}éw}dx dt. (13)
y z -

In (13) the expressions are calculated and introducing the designations one obtains
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oa

I ! Jll(zlj(ldzdyz_g _! 0'11(?:( Za]dzdy I I (0'11 Z)L: zgllaaajdzdy N ZX My&

j j O3 %dZdy = I I O3 (_ a)dzdy = .!: ! (_ O-lsa)dZdy =-Q,a;

J' JZ' alsaaxuldzdyzj. J' als(f;( gjjdzdy I I (013 gu 20136;:)dzd _Q3 Mls(alsz)ZZ'
[ ] our sy - /] [an 25,0 j M, ()2
y z
J'.[ 20y, 1dzdy I_[ZG13 a)dzdy = I.[ — 20 0)dzdy =M, (zo,)a;
y 2z y z
J; _! O'lszidZdy I I (0-13 -2’0y dedy:MB(zo-ls)aX_M13(0-1322)gj;
0 ow ow oW .
j I oy, auxe‘dzdy I j 011( jdzdy I j (011 P )dzdy N, &
_!. 'Z[ al3g3dzdy:'y[ JZ. 013(&jdzdyzjy. _Z[ algadzdy:QS%I(V, (14)
where
N, =I Iaﬂdzdy; M, =I Ioll-zdzdy; Q; =_[ j o,,0zdy; Mn(zzan): =I I o, 2°dzdy;
z y % y z

y 2

Ml3(2013):_[ J (Zgls)dZdy; M13(51322)=I I (Ulszz)dZdy-

From (13) an expression (14) is introduced:
[ ortdt=| {N @N —a—“M -Q,x } {My Z;:M f;(’MH(ZZ%)—06'\/'13(2013)}5%
t

t
ow ON 0 (ou oa
110, + YN, lawl| - Ly AN Sy,
{QS X X} HX {[{ax ax(ax X ClQ3ﬂ

oM o0 (aou oa
+|: axy ax(&My—5Mll(zzall)—aMls(Zals)j+

ou oa aQ3
_(Q3 —&Q3 " M, (0132)H5a { ™ 8x [ ™ Xﬂ&v}dx}dt. (15)

For nonlinear parts of the variation of potential energy the following designations are introduced:

ow ] ou ou,
R, I(—an aals]dlr; RZZ! = oudF; Ry =] [—XlZO'M aZo-lsde R, _Fa%dF

F
The variations of potential energy with introduced designations have the form:

Jartdt={ {N, +RJou+[Q, +R,Jow+[M, +R; o

4800
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OoN OR 0 OR oM OR
—j 4L su+ Q3+—2 oW — L+ =2 +R, |owdx tdt (16)
? ox  OX ox  OX ox  OX
Determination of the variation of work of external forces. Consider the variations of the work of external
forces:

5_[ Adt = I(Fla'll + FdU,)dv + I(qla'll +03dU;)ds + _[ (g, + (03&13)d51| X 17)
t v s S

here F, F; - are the components of volume forces, per a volume unit, 0, 0, — surface forces, respectively, per an area

unit of a rod surface, @, @,— boundary stresses.

In the variations of the work of external forces (16) the expressions of displacements u; and us are introduced
from (2):

Jordt=[ [ {Fou-2a)+Fawjdvdt+ | | {0,6(u-za)+q,owjdsdt +

t t v t s (18)

+ [ [(pou—-20)+pdu)dsdt,.
t s

Opening brackets and marking out the integral in the section of the rod, the variation and the work of external
forces (18) have the form:

of et | {;

t X

l:” (F.o(u - za) + Fydw)dzdy +j (9,6 (U - zax) + q,ow)dl |dx +

y z |

+| (¢16(u—za)+¢3am)dsl|x}dt= | {j [(f, + @) - (M(f,)+ M(g)a +

t X

+ (f, + @) owldx+ [380 + M () S+ o] ft. (19)

where

o=[ | eddy; @, =] [ pdzdy,  M(p)=] [ ¢ zdzdy;
y 2z y z y z

fo=] [ f.dzdy; fo=[ | fodzdy;  M(f)=] [ F-zdzdy;
y z y 2z y z

0, :J I @ dzdy; 05 :J J. @,dzdy; M (a,) :_[ I g, - zdzdy.
y y z y z

B. Derivation of determinant equations of spatially loaded rods.

Results obtained for the variation of kinetic energy (5), potential energy (16) and the work of external forces (19) are
introduced into Hamilton-Ostrogradsky’s variation principle (3) and derive the system of differential equations with
corresponding initial and boundary value conditions.

o%u O’a N, R,
Yot? o ox ox
w3, R,
ot?  ox  oX

+(f1+q1)20;

+(f,+0,)=0; (20)

Initial conditions:
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{pFa—u—pS 6—0[}&1 =0, {pF%}é/v{ =0; {—psy‘; Pl %}5&

at Yo
[N, -R +@ ) =0 [-Q,~R, +Z,Jon =0;[M, +R, + M((pl)](sa\x 0. (22

Boundary conditions:
Based on Hooke’s law the expression N X1 Q3, M y in displacements is obtained from the relationship (2)

=0. (21)

t

ou 0
o, =Ee, = 6_xl: E&(U—Za)z Ea——Ez—;

o —Ge. - E (0u i) E ((—a)+8—wj'
RO o0+ u)\ oz oox ) 20+ p) ox )
ou 0
N, = dzdy = [ [ Ee,dzdy=E[ [ =2dzdy=E[ [ = (u—za)dzdy =
x.!:_!.o-llzyjjz. €,,0zay II@XZy J;'Z[@X(u Za)zy
II[a—u—za—ajdzdy E(Fa—“—sya—“} N —E(F au sya—“j;
2 \Ox 0 OX oX OX OX

J' j o,,dzdy = I I Ge,,dzdy = GJ- I (aul %)dzdy:G.E _! (—a+%’l’jdzdy;

y 2

m

Q, :—GFa+GF@=GF(—a+%}
OX OX

j I oy, - Zdzdy = I j Eze,dzdy = EI I z%dzdy EI I z— (u—za)dzdy =

, O ou oa ). _ ou oa
_Ej j ( —-1 —jd dy—E(S ~ |yaj, My—E(S o o)

Now deflne the nonlinear part of the equations

S I
Rlzl {%{Eg(u—m} {1 ﬂ( “ ﬂ}

Rlzj Ei(u—m a—u—za—a dF a+— dF ;
1] ax ox ax 1+ﬂ
2
R =[ {E (a—”J _p 02 o (8“) dF - E j { }dF :
! ox ox ox ox 21+ )}

" E{F{(%ﬂ _ZSV%%+ 'y(aa_j]z} z(liﬂ)[‘F(“z +“%¥ﬂ};
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R =E a—”(Fa—“—sya“j a“[ sya—“+|ya—“}— d |:—Fa+F@} :
OX\ Ox ox ) ox OX ox | 2(1+p) OX
R _0 g 5_“(F5“ S 5_“)+5_0‘(_3 a 9_05)_ a (_Fmpﬂj _
X  OX ox\ ox Tox) oax\ Tox Tox) 2(1+pu) oX
celolapd g ), ot g &, 2] o e (e W)L
ox| ox\ ox OX OX| Ox OX OX x| 2(1+ u) OX
2 2 2 _\] 2
=E a—g(Fa—u—Sya—aj {a_u Fag—sya? + 6025(_Sy8_u+|y8_a) +
OX OX OX OX\ OX OX OX OX OX

2 2 2
|92 g TU Ly Oy —“( Fa +F—j _pla g oWl
OX OX OX 1+,u 0 OX OX

R, = [ @aﬂszj —[Ea—u—E —de E( FWA_g yawaaj EP’V(FG—“—S a_aﬂ
X ] ox ox ox Y ax ox ox ax Y ox

oR, 0 6W[ ou j 0 8u 60{}
T _ g M EX g S -
ox ox| ox\ ox Y oox OX > OX
2 2
_E avj(pa_“_sy@_“}% Fa—‘j—sya—f :
OX OX ox ) ox\ ox OX
R, =I %2011—012013 dF_I Mg —-a|z o, | Ny dF;
¢\ OX ¢ | OX OX 0z  OX
R, :J {i(u—za)-z{E(a—u—za—ajﬂdF—j a-zi(—a+@de;
L | X X OX 4 2(1+ p) X
2 2
RszEj z (8_uj _228_u6_a+22[8_aj dF—j a-ZL(—a+%)dF;
4 OX OX OX OX 4 201+ p) OX
EaS
R, :Ej z a—u(a—u—za—aj+a—a(—za—u+zza—aj dF——y(—a+@j;
¢ loxlox  ox) ax\ ox o ox 2(1+ ) X

R=E a—”(sya—“ |ya“j a“( 1, M A(z3)a—aj— z (—symsy@j;
x 7 ox ox ) ox\ 7 ox ox) 2(1+u) OX

Copyright to IJARSET www.ijarset.com 4803


http://www.ijarset.com/

-,

I1JARSET

ISSN: 2350-0328
International Journal of Advanced Research in Science,
Engineering and Technology
Vol. 4, Issue 11 , November 2017

E a—“(s CC a—“]+a—“(—| XAz )a“j— z (—S a+S @j -
ox\ "ox Yox) ox\ Yox 2(1+ )\ 7 Y ox
ou oa 8 Jda 8u oW
s, &, & 1= S,a+S, = ||t=
vax x| Tk ax U Yk 8x 2 Y ox
2 2
:E a_l:(sya_u_lya_aj +a_u Sya Iy a 02(( y aaj +
OX OX OX OX ox’ ox? 6x OX
2 2 2
e 6—2+A(z3)80; - aa( S,a+S aWj+a¢ 5, 9% g 6_\/2v ;
ox Y ox OX 2(1+ )| ox Y ox Yox Y ox
R4 = %O'lsdlz =j {Q(U —Za){ E (aul + 6U3 j:|:|d|:,
! OX L | ox 20+ p)\ 6z ox
SR (RN PRS0 T PN 2.
20+ u)d [\ox  ox X 20+ )i X X X X X X

R | o P, %) 2 2 g 2]
2(1+ p) ox ox ) ox\ 7 ox ox

Introducing the values of N,,Q, , M y R, R,,R;, R4’6R1 8X’8R2 o and

oR, . .
X into the equations (20)

and the boundary conditions (21), one gets:
o%u o’a o%u o’a
-pF ¥+p8y pre +EF PV ES, pv +

2 2 2 2
+E 8—2( A Sa—a) {a—u Fal;—Saozl +80;(—S 8_u+|8_aj+
o2\ ox OX ox\ ox* 7 ox OX Yox Y ox
2 2 2
+ oa -S 6121+| 6(;: I 60{( Fa +F%j+a _Fﬁ_a+F8\/2v +(f,+T)=0;
oX Yox? Y ox 2(1+ )| ox oX oX oX
2 2 2
0w, Gr[ 0%, 0w g0 ‘;V(Fa—”—sya—“j+@ FOU_s, 22 (f,+7,)=0
ot? OX 0OX OX OX OX

2 2 2 2
s JU_ a0‘+E(s ou_y a—“]+

p y 6t2 y atZ y aXZ y aXZ

ou(. ou , da\| ou(. du S« O’a ou oa
+E{| —| S, —— 1, —||+—| S —1 + 1 —+A(2%)= ||+
{aﬁ( Yox axﬂ ax( Yox? 7V ox? H {axz( Y ox ( )axﬂ
2 2
N B YD L | — 8“[ S,a+5 a‘”j ( 5,22 sy@j "
OX OX OX 2(1+ )| ox Y ox OX OX

+ﬁ{_a(F%_sy%}%(SV%_SV%H_(M (f)+M(T))=
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—E(Fa—“—sya—“j—E a—“(Fﬁ—“—sya—“)+a—“[—sya—“+|ya—“}— i {—Fa+F@} +, |ou
x Y ox axlax ax ) ax| e Y ox] 2(1+u) ox

ow ow( _aou o _
-GF|-a+—|-E|—| F—-S,— =0;
{ ( a+8xj {éx( ox 7 ij}r%}a’v{x @9

ou oa ouf . ou oa) Oa ou 3\ 0 a ow
E|S,——I —|+E|—| S, ——1 — |[+—| -1, —+A(Z*)— |- ~S.a+S,— | |+M(¢,) 6| =0.
“yax yaxj {ax[yﬁx Vaxj 6x( A )axj 2(l+,u)[ “ yaxﬂ (%)}ax
Initial conditions:
ou oo oW ou oa
F——pS, — |8 =0; | pF— =0;| —pS, —+ pl,— |Sar| =0. (25
{patpsyat}t {pFaJé% {pyat pyat} t (25)

C. Solution Algorithm.
Introduce dimensionless parameters: U =au, w=aw, t = tof, Xx=IX . Considering introduced

dimensionless parameters, the system of equations (23), boundary (24) and initial conditions (25) have the form:

272+ 2 22— 2
a“o“u ad‘a a“o“u ad‘a
g e e e
0 0
o’u( EFa® ou ES,a’ oo | ou( EFa® o’ ES,a’ o
=2 3 A = 3 —2 3 — |T
oX I oX | oX ox| I° oX I OX
o’a ES,@"ou El@ada)| oaf ES@*om Elada
> T AT T e T 2t 3 2 |
X P oax P x| & P ox? 1P &
1 |oa EFa EFa®ow EFada EFa® o’w .
el T w )T w o [T ®)=0

a’0’w  EF ada , EF a252w+
t,20t2  2Q+u) 16X 2(1+ p) 1°6%°

—pF

o’w( EFa’ ou ES,a’ 6| ow(EFa®o’t ES,a’ o2 ¢ a0
) R S vl A e ol MR S
ao‘u o’a ao’u o
psytozﬁt_z_plytozﬁt_z+ESy|25Y2_EIy|26Y2+ (26)

o%n(Ea’S, o Elaoa) ou(ES,a®om Elada) o Elaar EA(Z)oa
+ —- — |+—= - -~ —+ —= |+
&\ P &x P x| & P & &) & & X

oo Eal, om EA(Z) % 1 [oéaf ES, EaS, om 1 ES, da
| L — = - —|——Lat+—— ||| —a| L=+
x| P & P x| 20ep)| x| | 2 & )| 20+ p) | X
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EaS, o*w 1 EaF ou ES, da 1 {8w Ea’s, ou EaS, o
+— — | [+ -a — ||+t 5 5
1> ox 21+ p) | ox | ox)| 20+u)lox| 12 &x 1P X

~(M(f,)+M(q,)=

Boundary conditions:

EFa’ou ES,ada a’ou( EFacu ES,0a) ada| ES,adl Eloda aa EFaow
- - - - + - + - -EFa+——— |+ag, |ou| =0;
Iox Iox Iox | lox 1o lox lox 10x 2(1+ u)
2 W a’ow u ES oo
EaF o EaF @__a a_/v EFa_au 2 e, W] =0 27)
2Q+p) 2@+ p)lex  1ox | Iex lox i
ES aou EJ 0 [ ES,a’ou El.adn EA(Z°)oa ES, aow
AU Ele a ’ _EI;aﬁa Loe) S (2 ) — -ES,a+—— |+ M (¢,) |0a| =
lox lox ox| I°0ox I“ox ox [‘ox I“ox 2(1+ ) lox
Initial conditions:
2 N~ p—
a“ou aaa Fa 8W aou oa
F — — pS —0 oW S |, — |da| =0. 28
{p t,ot P ‘ o’ /1,0 e toat} - )

2
a
The system of equations (26), boundary (27) and initial conditions (28) is divided by EF |—2 and the

following expression to2 = Izé is introduced.

o’u S, d’a oU S, da 82_
B =P I L
ot® Faot® oX Fa oX

+82a S au
x> IFGY |Faa—

+X£EE%:E

_o'w
ot 2(1+/1)a8x 2(1+,u)6x
+82W la_U_ia_a +@ laZU_S_yaza + |2 (f +q)—0'
ox’lacx IFox) oxlaex? IFox?) EFa ° % 7
S,u 1, d*a S, 0T |, o«
— - —+— - +
Faot? Fa’ot? Faox? Fa®? ox°

LCu(S,an 1 oa) au(S, on 1) Pa) Pl | ar AlZ)oa ),
"X\F & Faox ) X\ FIaX IFacx’ ) ox°| IFaox  alF ox

ou_Syoa), ou Eaz_ﬁ_iéza .
oX |IF ox ox\ 1 ox®  IF ox°
_0‘ __a_U I_ya2a

IF ox? IFad72

—L%-aﬂ}'ZU+m

aox ox°
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Joaf N ow AZ)da| 1 [oa S sanl 1 [ (Sloa
x| Faox® IFa® &x° | 2(+p)| x| Fa' Faox )| 2(+u)| \Falax |

S, O°W 1 | oo S| o 1 {aw S, 00 S, da
+—=——1|+ | ————— ||t 77—
Fa ox 2(1+ 1) aox Faox )| 20+u) X\ F ox Faai
| _
—ﬂ(M(fl)JfM(ql)):O-

Boundary conditions:

_m_U_Sylaa_a_U adl S0 +8a Sau oo | 1 —Ea2+la@ N |2 7 lsu
| X Faox ox\ ox Fox ) ox Fox ' Fadx 2(1+p)| a ox | EFa’”

I 2 au S, o0a 2
(i aw) aw(ar 80w 1t e
20+ )\ a X ) x| & Fox ) EFa .
SJo0_foa au(S,00 10a) caf 1A AZ)oa] 4 8P sta) v
Fa’x Fa’ox oX\ FoXx Faox) ox| Faox Fa’x | 2(l+u)| Fa* Fadx TRt

Inltlal conditions:
g t,S t.S, o0 tl
LU L% 0a |5 =0; LW | o =0; —ua—ﬂ+°—yza—a Sa| =0.
ot Fa ot . ot : Fa ot Fa® ot .
aZUk Sy 82ak aZUk Sy 8zak

The system of equations of motion:
+ + — + + f,+0,)=0;
ot?  Fa ot?  ox° Fa ox? EFa( 1+G)=0 e9
otwt 1 |ao¢k+ 1 azwk+ -1, |2 (f,+d,)=0:
ot? 2+ u) aox  2(1+ ) oX? > EFa ® % 7
H H
S, o’u* 1, &%a* S, out I, 9%aX
y —— Y~ — 4 Y S— + - M(f)+M(g))=0.
Fa ot? Fa® ot? Fa ox? Fa? &x° 3 EFaz( (f)+M(a))

Here
- aZkal a akal Sy aakfl akal a aZkal S 82 k-1
O | e |t | T +
OX I oOX IF oOX ox (I ox IF ox?
aZak—l S a—k -1 Iy aak—l aak—l S 62 —k-1 Iy 62ak—l
+— + + —+ — |-
OX IF OX IFa oX OoX IF oX IFa ox
1 oa* (1 ., oW | ot o°wht )|
+ —| ——a" T+ +o| —— +—
20+pu)| x | a X a ox X
(Dk,]_ B aZkal laUk -1 S aak -1 62 k-1 S 62 k-1
? ox® |a ox IF oxX X la ox’ IF ox’ |

www.ijarset.com 4807
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aZUk—l [i akal ~ |y aak1J+ akal [Sy aZUk—l |y azaklj

ch—lz _
3 FI ox> |IFa o&x?

+82ak—1 {_ |, o . A(Zg) aali_,_ P {_ |, o A(Zg) azakl]_

& |FIl &x IFa ox x | Fl

2 2 2 + 2 2
X IFa oXx a’lF ox oX IFa oX IFa® oXx

1 [oa*t( SN . S, ow*? 1 el S aa*t S, 2w
- - a T+ — - -a + +
A0+u)| ox | Fa’ Fa ox 2L+ 1) Fa? ox Fa o&X

1 w1 ekt Syl aak? 1 [ow (S, au** S, aa*?
+ || — - + — —— ;
201+ u) a ox Fa? & 20+u) x |F o&x Fa &

Boundary conditions:

~—"

log© S,oa* _ . 12
- :0’
{ X Fax ' EFa’ )
2 — K 2
N | L —6'2‘*1+|—g53 S| =0; (30)
201+ u)| a X EFa i
s lou* I loa* _ 12
! — + D54 M oal =0.
[ rax Fa T e M) )
Here
cT)k—l_aUk& El-aﬁkfl_syaak_1 +aakfl _SyaUk_lJrlyaak_1 1 _Ea2k—1+|0{5V_ka1 .
oo | ox Fox ox Fox  Faox | 2(1+u)| a x|
6k_l:aWk-l aaUk—l _Syaak—l .
? oxX ox Fox |
a)k—lzaUH SyaUk—l_ Ixaak—l +aak—1 _|y8LTk_1+A(ZS)6aH )
: X | Fox Faox X Faox Fa2ox
~ akfl _Sylzak_1+s_y|av_\’k4
2(1+p)| Fa? Fa ox |
Initial conditions:
—k S k — K S —k | k
U200 b sio=0| W ow =0 |- v 9%l sl —0. e
ot Fa ot . ot : Fa ot Fa® ot .

The solutions of differential equations of motion (29) with corresponding initial (31) and boundary conditions
(30), obtained from the variation principle in a scalar form, are quite difficult. Therefore, the system of differential
equations, initial and boundary conditions can be represented in vector form.

Introduce the vectors

U=[owal; E=[f,+q) (f, +3) (M(f,)+M@)]; Fl0)=[7.7, M) ;

—
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HrL = I:qblk—l,q)zk—l’q)sk—l : PrL = I:alk—l,azk—l’agk—l ' (32)
The system of equations (29), initial conditions (31) and boundary conditions (30) with introduced elements of
the matrix are written in vector form

217k 217 k Tk Tk
Ma UZ +Aa U2 +B6U +ED®+DF =0; (33) —MaU Et,0U| =0; (34)
ot OX OX ot .
_ aljk _ = == —
A . +BU* + E®*" + DF(p) [EIU| =0. (35)
X o
Here the elements of the matrix M from the system of equations have the following expressions:
1 Sy 1 Sy J y
m,=-ILm,=—;m, =-1m, =—; My =——
11 13 Fa 22 31 Fa 33 Fa2
The elements of the matrix A from the system of equations have the form
G S J
ay =L a; = _F_;; A :E; ag :F_;; Ag = F;lz .
b __El_-d =d _L- __L
23 E a’ 11 22 EFa 1 33 EFa

In initial conditions the elements of the matrix have the opposite signs relative to the elements of the matrix of the
system of equations (M . =—M C.y.)
At k=1 a linear problem is solved, this is a zero approximation of the problem
o’ux otu* _ouk -
M —+A——+B + DF =0; (36)
ot OX OX
=0.(398)

Tk
VR Et,0U
at t )

At k=2 nonlinear items of a given equation are solved. This is the first approximation of the solution, further the
process of iteration occurs

OX

. LT LT, [
=0; (37) A +BU* + DF(p) |EISU

—

k k-1

When constructing the computing algorithm for the system of differential equations (36) with initial (37) and
boundary conditions (38), the central finite-difference correlations of the Finite difference method with the second
order of accuracy is applied [27,28]:

<é.

U 1 .1- . o'U 1 - = 0
M atz :T_ZM[Ui,j+l_2Ui,j+Ui,j1} A@TZh_ZA[U”l’j_ZUi'j +Ui—1,j}

ou 1 [~ - ou 17~ -

BgzﬁBUiﬂ,j _Ui—l,j} E:Z[Ui,jﬂ_ui,il] (39)

Introducing (39) into (36) one obtains:
M- - - Al- - - Br- - =
T_Z[U' —2ui,,.+ui,jl]+F[ui+Lj—2ui,j+Uil,j]+—[u U, |+DE, =0. wo

i j+l 2h i+Lj

Divide the equation (40) by l\%z .
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2 -1
- - PAM - -
[Ui,j+1 _2Ui,j +Ui,j1]+h—2[ui+1,j _2Ui,j +Ui—1,j ]"‘
(41)
2 -1
BM™ - - -
+’T[Um,j ~U,,,|]+De*ME =0,
Reduce the similar items
2 -1 2 -1 2 -1
Ui —[2+—ZT :zM —rZCAl}ULj +{T AhIZVI 7 ilr\]/l j|ljil,j +
2 -1 2 -1
+[’ Ah'zv' + 2 ler\m/l }UMJ +U, ., +DM*2?F, =0;
Introduce the designations:
- 2 -1 2 -1 2 -1 - 2 -1 2 -1 - _
RoTAMT BMT g o, M g TAM L TBM L _DeME, w
h? 2h h h 2h ‘ ’
Introducing (42) into (41), one obtains
le + AUi_le — BUi’j +CUi+l’j +Ui,j—1 + Fi’j =0.
The last equation is solved relative to the vector of functions Ui,j+1'
Ui, n=—AU,,; +BU;, -CU, ,; -U;, . - F; (43)
At j =0, i =1 consider the initial conditions
ou = M= - " "
M— =U,=—I(U,,-U,,} Ul =U’. 44
at f:to i,0 21_( il |,—1> f=t, i,0 ( )
From initial conditions (44) define the vector of functions lji’_l.
U _,=U,-2c-M *1U;i,O AT (45)
At j=0,1=1 equation (43) is solved
Ui,l = _'&Ui—l,o + gai,o _éom,o - (Ui,l —27- A_lui(,)o )_ I-:gi,o =0;
Reduce the similar items and the result is divided by 2.
- 1 ~ - ~ ~ i ~
U, = E[‘ AU, +BU;, -CU;,, +27- AU i(?O - Fi,O] (46)
With initial conditions (44), equation (46) has a form
- 1 ~ - ~ ~ i ~
U, = Sr AU, ,,° +BU,," -CU, " +2r-A*M U}, - Fm] (47)
At j =1, =i equation (43) with initial conditions has the form:
— -~ - ~ ~ _.0 —~
U, =-AU., +BU;, -CU,;,;, U, —F, (48)
Consider boundary conditions (38) at 1 = 0, approximate by a step forward
ou 1 ( .- -
—=—(-30, +40, -U,, 49
8X 2h( 0,j 1,j 2,]) ( )

Introducing (49) into (38) one obtains:

Copyright to IJARSET www.ijarset.com 4810


http://www.ijarset.com/

)

IJARSET

ISSN: 2350-0328
International Journal of Advanced Research in Science,
Engineering and Technology
Vol. 4, Issue 11 , November 2017

B - - - _ _

[—E(—au(,,j +40,, -U, )+BU,, + DF(([))OJ-:| - 0. (50)
i=0

Reduce the similar items and solve relative to UO’j

3B - N
K—%JFBJU J+4u1,j—u2,j+DF((p)0,j} =0

i=0

at J = j, =1 equation (43) is solved

ULj+l = —AUQj + BU“ —CUZ,J- —Ul,j_l -F, (52)
With boundary conditions (51)
- ~l( 3B _ ‘1< . L ) _— o~ - ~
U ,,=-A —E+B 4u1,j+u2,j—DF(go)0,j +BU,,-CU,,-U,,-F,

Reduce the similar items

. (53)
. ~ 3B =) == ~
~Uyja+ A -2 +B DF(p),, - F.,
Introduce the designations:
1 -1
A =4A _3B .8 +8B. B, = —4A _3BLB] +C
2h 2h
-1
~( 3B —\ —-
PO,j = A(_E-'_ Bj DF(gD)O,j (54)
With the introduced deS|gnat|ons (54) equation (53) has the form:
lj+l A1U11+BU21 Ulj—1+PO,j_F1,j (55)
At J = j, I =N consider boundary conditions (39). Here the derivatives (3_ are approximated by a step
X
backward
U 1 (- " .
gzﬁ(sum. —40,,, +U, )
Entering this equation into (38), one obtains:
A - . . .
_E@UNJ ~4G,,,+U,,,)+BU,  + DF(p),, =0 (56)

Reduce the similar items
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A =5 LYG A5 LbBE
(_E-F B)UNJ +EU N-Lj _EUN*ZJ +DF(p)y, =0

Equation (57) is solved relative to the vector of the function UN’J- ,

O

— -1 — —
- 3A - 4A - A -
s (E BJ (‘%“N—w Ton e

ﬁ«o)N,,-j

At J = j, i=N —1equation (43) gas the form:

~ — ~

UN—l,j+l :_AUN—Z,j + BUN—l,j _CUN,j _UN—l,j—l -

T

N-1,j

With correlations (58)

2h 2h

— -1 — —
- ~ - ~|( 3A = 4A - A - —_ ~
UN—l,j+1 =-AU N-2,j + BUN—l,j _Cl:(__"' B] (__UN—l,j +_UN-z,j - DF((”)N,jJ:l_UN—l,j-l -

Reduce the similar items

_ 1 _ 1 _
. ~ o 3A O\ A ~ o 3A -\ 4A)-
U ju —[—A—C(—EJF Bj 'EJUNZJ +[B+C(—E+ BJ 'E]U N-Lj T

— a
- ~( 3A ) __- -
_UNl,jl+C(_E+BJ 'DF((P)N,,‘ —Fya;

Introduce the designations

With the introduced designations (60) equation (59) has the form:

— -1 —

~ = = 3A =) A . _ - (3 _\ A
=-A-C|-—+B| -—;B, = —— —
A ( oh J B, B+4C( 2thBJ :

~

UN—l,j+1 - KlUN—Z,j + §1U N—L, j -U N-1,j-1 + PN i FN—l,j

')

Equation (43) is written with ] =0,1=1

~

U1,1 = A1U1,o + BlU 2,0 _Ul,—l +Po,0 - Fl,O

With correlation (45).

~

L]1,1 = AIL_jl,O + Blljz,o _01,71 +2aM 7101?0 + Po,o - I:1,0

Reduce the similar items and with initial conditions (43)

- 1 - - 0 et ~
U1,1 = E A1U1,o + Blu 20 T 27M 1Ulo,o +Po,o - Fl,O

At J =1 =1 equation (43) has the form:

— — ~

Ul,2 = _AUO,l + BUl,l _CUZ,l _Ul,O - I:1,1

With initial conditions (44), equation (55) has the form:

~

q I T 171 O
U1,2 = A‘iul,l + Blu 2,1U1,0 + P0,1 - I:1,1
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At i =N =1, j =0 equation (43) is written in the form:

~ —

GN a1 = _AUN 2,0 + BUN—LO _CUN,O _UN—l,—l -

With initial conditions (44) equation (61) has the form
N 11 A’lUN 20t B UN -1,0 UN—l,—l + PN,O

With correlation (45), reduce the similar items. The last equation has the form.

Uy, = A1U N-20 + BU *N-10 + 27A7 1u310+PN0

At 1 =N =1, ] =1 consider equation (43)
UN -1,2 :_AUN -21 + BUN -11 _CUN,l _UNfl,O

Here consider initial conditions (44). Equation (61) has the form

UN—1,2 A1UN 21+BU N—11—U N—11+PNl

Il. CONCLUSION

The order of formulated solution of the problem

k=1E®°=0

0.

1.1=1, j =0: equation (62) is solved

2. 1=1, J = 0 equation (47) is solved
3.1=N =1, j =0: equation (64) is solved
4.1 —1 J =1: equation (63) is solved

5.1 =1, ] =1 equation (48) is solved

6. 1=N —1, ] =1: equation (65) is solved
7.1=1, J = J . equation (55) is solved

8. =1, J = J equation (43) is solved
9.1=N -1, j= j: equation (61) is solved
10. k=k +1

1) k=1;

2) 1 =1, ] =0 equation (62) is solved

3y 1 =1+1;

~

FN -1,0
- FN -1,0
IEN 1,0 (64)
- FN -11
Fuis (65)

4) i >N —2, If conditions are not satisfied to proceed to point 2, otherwise — to point 3;

5) i =1, ] =1: equation (48) is solved;
6) I =1+1;

7) 1 = N — 2. If conditions are not satisfied to proceed to point 5, otherwise — to point 6;

8) i =N —1, j =1: equation (65) is solved;
9) i =1, j= J: equation (55) is solved;
10) i =1 +1;

11) i > N — 2. If conditions are not satisfied to proceed to point 9, otherwise — to point 10;

12) i =N =1, j = j: equation (61) is solved;
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13) j=j+1;
14) | > M. If conditions are not satisfied to proceed to point 12, otherwise — to point 8;

15) k =k +1;
16) Calculation of nonlinear items;
17) Proceed to point 1;

Tk T k-1
18) ‘Ui i~ Ui j ‘ < &. If conditions are satisfied to proceed to point 19, otherwise —to point N —1;
19) The end.
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