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ABSTRACT: The concept of weak* commuting mappings was given by H.K. Pathak [3]. has generalized some results 

of  B. Fisher [2] on fixed point theorem by using the concept to weak ** commuting mapping. We have two common 

fixed point theorems for three self maps of a complete metric space satisfying a rational inequality by using the 

concepts of weak ** commuting maps and rotativity of maps. We further extend the results of Diviccaro, Sessa and 

Fisher [1]. 
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                                                                 I. INTRODUCTION 

We begin with the following known definitions:- 

Definition 1 :  Let (X,d) be a space and let S and I be mappings of X in to itself. We define the pair (S,I) to 

be weak ** commuting. 

                        if  S(X)⊂I(X) 

and d(S
2
I

2
x, I

2
S

2
X) ≤ d(S

2
Ix, IS

2
x) ≤ d(SI

2
x, I

2
Sx) ≤ d (SIx, ISx) ≤ d(S

2
x, I

2
)  

for all x in X. 

It is obvious that two commuting mapping are also weak ** commuting, but two weak**commuting do not 

necessarily commute as shown in example 1 below. 

Definition 2 :           A map T:X→X is called idempotent, if T
2
 = T. We note that if mappings are idempotent, then 

our definition of weak ** commuting of pair (S,I) reduces to weak commuting of pair (S,I) defined by Sessa [5]. 

Definition 3 :       The map T is called rotative w.r.t.I, If d(Tx, I
2
x ) ≤ d(Ix, T

2
x)  

for all x in X. clearly if T and I are idempotent maps, then definition is obvious. 

Common fixed point theorems for a weak ** commuting pair of mappings. 

  In this section, we have some results on common fixed points for three self maps of a complete 

metric space satisfying a rational inequality by using the concepts of weak ** commuting maps and rotativity of maps. 

The following theorem generalizes the result of Diviccaro, Sessa and fisher [1] 

Theorem 1. Let S, T and I be three mappings of a complete metric space (X,d) such that foa all x, y in X either  

(I) d(S
2
x, T

2
y) ≤ K' [d(I

2
x, S

2
x) + d(I

2
y, T

2
y)] 
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+K 
 d I2x, S2x . d(I2y, T2y) +  d I2x, T2y . d(I2y, S2x) 

d I2 x, S2x + d I2y, T2y 
 

     if d(I
2
x, S

2
x)+ d(I

2
y, T

2
y) ≠ 0, where K' < 1, and (K+K')<1/2, or 

(II) d(S
2
x, T

2
y) = 0 if d(I

2
x, S

2
x)+ d(I

2
y, T

2
y)=0 

 

Suppose that the range of I
2
 contains the range of S

2
 and T

2 
. If either 

(a1) I
2
 is continuous, I is weak ** commuting with S and T is rotative w.r.t.  I, 

(a2) I
2
 is continuous, I is weak ** commuting with T and S is rotative w.r.t.  I, 

(a3) S
2
 is continuous, S is weak ** commuting with I and T is rotative w.r.t.  S, 

(a4) T
2
 is continuous, T is weak ** commuting with I and S is rotative w.r.t.  T 

 Then S, T and I have a unique common fixed point z. Further, z is the unique common fixed point of S and I 

and T and I. 

Proof. Let x0 be an arbitrary point in X. Since the range of  I
2
 contains the range of S

2
, let x1 be a point in X such 

that S
2
 x0 = T

2
x1 . Since the range of I

2
 contains the range of T

2
, we can choose a point x2 such that 

T
2
x1 = I

2
x2 in general, having chosen the point x2n such that : 

                                                   S
2
x2n = I

2
x2n+1 

    and T
2
x2n+1 = I

2
x2n+2 for n = 0,1,2 ............................ 

 Now we distinguish three cases : 

 

Case I. Let d2n-1 ≠ 0 and d2n≠ 0 for n = 1,2 ............. then,   We have 

  d2n-1 + d2n= d(I
2
 x2n, S

2
 x2n) +d (I

2
 x2n+1, T

2
x2n+1) ≠ 0, for n = 1,2.......... 

  Using inequality (I), we then have 

  d2n= d(S
2
x2n, T

2
x2n+1) 

                ≤ K(d2n-1+d2n) + K.  
𝑑2𝑛−1  𝑑2𝑛 + 𝑑 T2  X2n−1T2x2n +1 .d(S2X2n ,S

2X2n )

𝑑2𝑛−1+𝑑2𝑛
  

ie.,  d2n ≤ K(d2n-1+d2n) + K  
𝑑2𝑛−1.  𝑑2𝑛

𝑑2𝑛−1+𝑑2𝑛
  

ie.,  d2n ≤ K(d2n-1+d2n) + K(d2n-1+d2n) 

Then  d2n ≤   
(𝐾 ′+𝐾)

(1−𝐾 ′−𝐾)
 𝑑2𝑛−1 

 which implies that 

  

  d2n < d2n-1  since (K'+K')< ½ 

Then 

(1) d(S2x2n−1 , T2x2n+1) < d(T2x2n−1,S
2x2n)  for n = 1,2............. 

Similarly, it is proved that d2n-1< d2n-2 

So    d(T2x2n−1,S
2x2n) < d (S2x2n−1,T

2x2n−1) for n = 1,2............. 

It follows that the sequence 
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(2)  { S
2
x0, T

2
x1, S

2
x2......... T

2
x2n-1, S

2
x2n ,T

2
x2n+1...............................} 

is a Cauchy sequence in the complete metric space X and so has a limit w in X.  

Hence the sequence 

   {S
2
x2n}= {I

2
x2n-1} and { T

2
x2n-1} = {I

2
x2n} 

converge to the point w because they are subsequences of the sequence (2).    Suppose first of all that I
2 

 is 

continuous, then the sequence {I
4
x2n} and {I

2
S

2
x2n} converge to the point I

2 
w. If I weak ** commutes with S, we have 

d(S
2
I

2
x2n, I

2
w)   ≤ d(S

2
I

2
x2n, I

2
S

2
x2n) + d(I

2
S

2
x2n, I

2
w)    

     ≤ d(S
2
x2n, I

2
x2n) + d(I

2
S

2
x2n, I

2
w)    

 

which implies , on letting n tend to infinity that the sequence {S
2
I

2
x2n} also converges to I

2
w. We now claim that 

T
2
w=I

2
w. Suppose not. Then we have d(I

2
w,T

2
w)> O and using inequality (I), we obtain 

 d(S
2
I

2
x2n'T

2
w) < K'[d(I

4
x2n' S

2
I

2
x2n)+d(I

2
w,T

2
w)] 

  + 𝐾 [
𝑑 𝐼4𝑥2𝑛 ,𝑆

2𝐼2𝑥2𝑛 , .𝑑 𝐼2𝑤,𝑇2𝑤  +𝑑 𝐼4𝑥2𝑛 ,𝑇2𝑤 .𝑑(𝑇2𝑤,𝑆2𝐼2𝑥2𝑛 )

𝑑 𝐼4𝑥2𝑛 ,𝑆
2𝐼2𝑥2𝑛 , +𝑑 𝐼2𝑤,𝑇2𝑤  

]  

On letting   n tend to infinity, we deduce  that 

d(I
2
w,T

2
w) < K'.d(I

2
w,T

2
w) 

i.e  (1-K') d(I
2
w,T

2
w) <  0  a contradiction  since  K'<1.   

  Now suppose that S
2
w ≠ T

2
w, then 

 d(S
2
w,T

2
w)  < K' [d(I

2
w, S

2
w) + d(I

2
w,T

2
w)] 

           +K[
𝑑 𝐼2𝑤 ′ 𝑆

2𝑤 .𝑑 𝐼2𝑤 ′𝑇
2𝑤 +𝑑 𝐼2𝑤 ′ 𝑆

2𝑤 .𝑑 𝐼2𝑤 ′ 𝑇
2𝑤 

𝑑 𝐼2𝑤 ′ 𝑆
2𝑤 +𝑑 𝐼2𝑤 ′ 𝑇

2𝑤 
]  

i.e.  d(S
2
w,T

2
w) <  K'd(T

2
w,S

2
w) 

i.e. (1-K') d(T
2
w, S

2
w) < 0  a contradiction.  

 Thus I
2
w = S

2
w = T

2
w. 

 A similar conclusion is achieved if  I weak ** commute with T. Let us now supposse that S
2
 is continuous 

instead of I
2
. The in subsequences {S

4
x2n} and {S

2
I

2
x2n} converge to the point S

2
w. Since S weak ** commutes with I, 

we have that the sequence {I
2
S

2
x2n} also converges to S

2
w. Since the range I

2
 contains the range of S

2
, there exists a 

point w', such that  

  I
2
w' = S

2
w  
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Then   T
2
w ≠ S

2
w = I

2
w

'
, we have  

d(S
4
x2n, T

2
w') ≤ K'[d (I

2
S

2
x2n' S

4
x2n) + d (I

2
w', T

2
w

' 
)] 

  + K[
𝑑 𝐼2𝑆2𝑥2𝑛 ,𝑆4𝑥2𝑛  .𝑑 𝐼2𝑤 ′ ,𝑇2𝑤 +𝑑 𝐼2𝑆2𝑥2𝑛 ,𝑇2𝑤 ′.𝑑 𝐼2𝑤 ′,𝑆4𝑥2𝑛  

𝑑 𝐼2𝑆2𝑥2𝑛 ,𝑆
4𝑥2𝑛  .𝑑 𝐼2𝑤 ′,𝑇2𝑤 ′ 

] 

and on letting n tend to infinity, it follows that  

d(S
2
w, T

2
w') ≤ K' [d(S

2
w, S

2
w) + d(I

2
w', T

2
w')] 

       + K [
𝑑 𝑆2𝑤,𝑆2𝑤 ).𝑑 𝐼2𝑤 ′,𝑇2𝑤 ′ +𝑑 𝑆2𝑤,𝑇2𝑤 ′ .𝑑 𝐼2𝑤 ′,𝑆2𝑤 

𝑑 𝑆2𝑤,𝑆2𝑤 ).𝑑 𝐼2𝑤,𝑇2𝑤 ′ 
] 

i.e. d(S
2
w,T

2
w') ≤ K' d(S

2
w,S

2
w')  

i.e. (1-K').d(S
2
w,T

2
w') ≤ 0, which is a contradiction.  

 Thus S
2
w= T

2
w' = I

2
w'. Now suppose that S

2
w ≠T

2
w = I

2
w', 

Then d(S
2
w, T

2
w') 

 ≤ K' [d(S
2
w',S

2
w') + d(I

2
w',T

2
w')] 

 + K [
𝑑 𝑆2𝑤 ′,𝑆2𝑤 ′ .𝑑 𝐼2𝑤 ′,𝑇2𝑤 ′ +𝑑 𝐼2𝑤 ′,   𝑇2𝑤 ′ .𝑑 𝐼2𝑤 ′,𝑆2𝑤 ′ 

𝑑 𝑆2𝑤 ′,𝑆2𝑤 ′ ).𝑑 𝐼2𝑤 ′,𝑇2𝑤 ′ 
]  

 = 0,  a contradiction, and so I
2
w' = S

2
w' =T

2
w'  

A similar conclusion is obtained if one assumes that T
2
 is continuous and T is weak ** commuting with I.  

Cass II. Let d2n-1 = 0 for some n. Then I
2
x2n = T

2
x2n-1 = S

2
x2n. 

 We claim I
2
x2n = T

2
x2n , since otherwise  

if  d(I
2
x2n'T

2
x2n) > 0, inequality (I) implies,  

0 < d(I
2
x2n'T

2
x2n) = d(S

2
x2n'T

2
x2n) 

  < K'[d(I
2
x2n'S

2
x2n) + d((I

2
x2n'T

2
x2n)] 

 

       +𝐾[
𝑑 𝐼2𝑋

2𝑛 ′𝑆,2𝑋2𝑛 𝑑 𝐼2𝑋
2𝑛 ′𝑇

2𝑋2𝑛 +𝑑 𝐼2𝑋
2𝑛 ′𝑇

2𝑋2𝑛 .𝑑(𝐼2𝑋2𝑛 ′ 𝑆
2𝑋2𝑛 )

𝑑(𝐼2𝑋
2𝑛 ′𝑆

2𝑋2𝑛 )+𝑑((𝐼2𝑋2𝑛 ′ 𝑇
2𝑋2𝑛 )

] 

        = K'[d2n-1+ d((I
2
x2n,T

2
x2n)] 

+𝐾[
𝑑2𝑛−1. 𝑑 𝐼2𝑥2𝑛 ′𝑇2𝑥2𝑛 + 𝑑 𝐼2𝑥2𝑛 ′𝑇2𝑥2𝑛 . 𝑑2𝑛−1

𝑑2𝑛−1 + 𝑑(𝐼2𝑥2𝑛 ′𝑇2𝑥2𝑛)
] 

i.e.  0 < d (I
2
x2n,T

2
x2n) < K' .d(I

2
x2n ',T

2
x2n) 

i.e.  0 < d (1-K') .d(I
2
x2n'T

2
x2n) < 0,   a contradiction.  

Thus  I
2
x2n = S

2
x2n=T

2
x2n

. 
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Case III. Let d2n =0 for some n. Then  I
2
x2n+1= S

2
x2n = T

2
x2n+1              and              reasoning as in Case(II)       

I
2
x2n+1=S

2
x2n+1=T

2
x2n+1'  

 Therefore in all cases , there exists a point w such that I
2
w=S

2
w=T

2
w.  

If I weak ** commutes with S, we have  

d(S
2
Iw,IS

2
w)<d(SI

2
w,I

2
Sw)< d(SIw, ISw)<d(S

2
w,I

2
w)=0, which implies that 

(3) S
2
Iw=IS

2
w,  SI

2
w=I

2
Sw, SIw= ISw, and so I

2
Sw=S

3
w.  

Thus  d(I
2
Sw, S

2
Sw) + d (I

2
w,T

2
w) = 0 and using condition (II), we deduce that                   SI

2
w = S

2
Sw =T

2
w =I

2
w. 

  

It follows that I
2
 w = z is fixed point of  S.  

 Further    d(I
2
Iw, S

2
Iw) + d(I

2
w,T

2
w) = 0  

 and using condition (II), we deduce that Iz = S
2
Iw = IS

2
w = T

2
w = z     and               using inequality (I), on the 

assumption that T
2
z ≠ z, we have  

 d(z,T
2
z) = d(S

2
z,T

2
z)  

 

<  K' [d(I
2
z,S

2
z) + d(I

2
z, T

2
z)] 

 +K[
𝑑 𝐼2𝑧,𝑆2𝑧 .𝑑 𝐼2𝑧,𝑇2𝑧 +𝑑 𝐼2𝑧,𝑇2𝑧 .𝑑 𝐼2𝑧,𝑆2𝑧 

𝑑 𝐼2𝑧,𝑆2𝑧 +𝑑 𝐼2𝑧,𝑇2𝑧 
] 

i.e.,  d(z,T
2
z) <  K'.d (z,T

2
z)   

i.e.,  (1-K') d(z,T
2
z) < 0,  a contradiction. 

 And so     z = T
2
z.  

Now using the rotativity of T w.r. to I (or w.r. to S),    we have  

 d(Tz,z)= d(Tz,I
2
z) < d(Iz,T

2
z) = d(z,z) = 0,  

and so z is a common fixed point of   I, S and T.  

If one assumes that I weak ** commutes with T and S is rotativity w.r. to I (or w.r. to T),    the proof is of course 

similar.  

 Now suppose that z' is a second common fixed point of  I and S. Then  

  d(I
2
z',S

2
z') + d(I

2
z, T

2
z) = 0 and condition (II) implies that  

   z' = Sz' = S
2
z' = T

2
z = z.  

 We can prove similarly that z is the unique common fixed point of  I and T.                

 This completes the proof of the theorem.  
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Example 1. 

 Let X be the subset of R
2
 defined by  

  X = (A,B,C,D,E),  

where A ≡ (0,0), B ≡ (0,1), C ≡ (0, 1), D = (1/2,0), E ≡ (- 1,0).  

 Let I, S, T : X → X be given by  

 

  I(A) = I(B) = I(C) = B,   I(D) = A,  I(E) = D,  

  S(A) = S(B) = S(C) = B,   S(D) = S(E) = A,  

  T(A) = T(B) = T(C) = T(D) = T(E) = B.  

 By  routine calculation it is easy to see that I weak ** commutes with S and T is rotative w.r.to S.  Clearly I
2
 

(or S
2
) is continuous and  

 S
2
(X)={B} ⊂ {A,B} = I

2
(X) and T

2
(X) ={B}⊂{A,B} = I

2
(X).  

 Further, and easy routine calculation shows that inequality (I) holds for instance       K' < 1,  and  (K + K') < 

1/2  and condition (II) holds for the points x, y ∈ {A,B,C,D}.  

 Therefore all the conditions of Theorem 1 are satisfied and B is the unique common fixed point of  I, S and T.  

 We also note that is neither commutative nor weakly commutative with S, for otherwise,  

  SI(E) = A ≠ B = IS(E)  

 and  d(SI(E),IS (E))= d(A,B) = 1 > 1/2 = d(A,D)  

        = d (S(E), I(E)).  

Example 2.  

 Let X = {x,y} with the discrete metric. Define the mappings  

      I = S = T  by  Ix = x, Iy = y.  

 All the conditions of the Theorem 1 are satisfied except condition (II) but I, S and T. have two common fixed 

points.  

Assuming I = I
2 
(identity map on X) and dropping the rotativity of T(or S) we have the following corollary.  

Corollary 2. 

 Let S and T be mappings of a complete metric space (X,d) into itself such that for all x,y in X either,  

(III)  d(S
2
x,T

2
y)  

        <  K' [d(x,S
2
x) + d(y,T

2
y)] 

       + 𝐾[ 
𝑑 𝑥,𝑆2𝑥 .𝑑 𝑦,𝑇2𝑦 +𝑑 x,𝑇2y .d  y,𝑆2x 

𝑑 𝑥 ,𝑆2𝑥 + 𝑑(𝑦.𝑇2𝑦)
] 

http://www.ijarset.com/
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  If  d(x,S
2
x) + d(y,T

2
y) ≠ 0 where K' < 1 and (K+K') < 1/2,  

  or      d(S
2
x,T

2
y) =0  If  d(x,S

2
x) + d(y,T

2
y) = 0  

 Then S and T have a unique common fixed point z. Further, z is the unique fixed point of  S and  of  T.  

Proof.   It is not very hard to show that there exits a point w 𝜖 X such that w = S
2
w = T

2
w. 

 Thus d(Sw,S
2
Sw) +d(w,T

2
w) = 0 and using condition (III), we deduce that              Sw = S

2
Sw =T

2
w=w. 

Again d(w,S
2
w) + d(Tw,T

2
Tw) = 0 and so using condition (III),         we deduce that Tw = T

2
Tw = Sw = w. It follows 

that w is a common fixed point of S and T. The unicity of w follows easily.  This completes the proof.  

Remark 1.  

 If follows from the proof of the Theorem 1 that if condition (II) is omitted in the statement of Theorem 1 we 

can say that w is a concidence point of I
2
, S

2
  and T

2
.  

Remark 2.  

      Assuming I, S and T as idempotent maps of X, and K'=0, we obtain Theorem 1 of [1]. 

Remark 3.  

 Assuming I as identity map and S and T as idempotent map of X and K'=0, we obtain Theorem 3 of [2].  

Remark 4.  

 Assuming I, S and T as idempotent maps of X and S=T on X, and K' =0, we obtain Corollary 2 of [1].  
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