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ABSTRACT:A new formulation is presented to describe immiscible compressible two-phase flow in porous media by 

the concept of Global pressure. The main feature of this formulation is the introduction of new global pressure and it is 

fully equivalent to the original equations. The resulting equations are written in a fractional flow formulation and lead 

to a coupled system which consists of a nonlinear parabolic (the global pressure equation) and a non linear-convention 

equation (the saturation equation) which can be efficiently solved numerically. 

 

1. INTRODUCTION 

Two-phase flow in porous media is important to many practical problems, including those in petroleum 

reservoir engineering, unsaturated zone hydrology, and soil sciences. Most recently, modeling multiphase flow 

received an increasing attention in connection with the disposal of radioactive waste and sequestration of CO2. 

This paper focuses on the modeling and analysis of immiscible compressible twophase flow through porous 

media, in the framework of the geological disposal of radioactive waste. As a matter of fact, one of the solutions 

envisaged for managing waste produced by nuclear industry is to dispose of it in deep geological formations chosen for 

their ability to prevent and attenuate possible releases of radionuclides in the geosphere. In the frame of designing 

nuclear waste geological repositories appears a problem of possible two-phase flow of water and gas, mainly hydrogen 

[7,8]. 

The mathematical analysis of two-phase flow in porous media has been a problem of interest for many years 

and many methods have been developed. There is an extensive literature on this subject. We will not attempt a 

literature review here, but merely mention a few references. Here we restrict ourselves to two-phase flow in porous 

media. 

Here, the models are based on phase formulations, i.e. the main unknowns are the phase pressures and the 

saturation of one phase, and the feature of the global pressure as introduced in [3,5] for incompressible immiscible 

flows is used to establish a priori estimates. The obtained results are established under the assumption that the capillary 

pressure is bounded and no discontinuity of the porosity and the permeability is permitted, which is too restrictive for 

some realistic problems, such as gas migration through engineered and geological barriers for a deep repository for 

radioactive waste. 

For modeling such flow problems, there are two main approaches known as the phase and the global pressure 

formulations. The phase formulation is based on individual balance equations for each of the fluids. For such 

formulation, in regions without the wetting fluid, the wetting pressure is physically not well-defined. So the pressures 

are not mathematically well defined globally. Also, as a consequence of the degeneracy of the relative permeability 

functions is that no uniform bounds for the pressure gradients in L2-spaces are available. To overcome these difficulties, 

the global pressure formulation of the original flow equations was introduced for incompressible two-phase flows in 

[3,5], and generalized recently to compressible two-phase flows in [1, 2, 9] and for three-phase flows in [4]. 
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II. PRELIMINARIES FOR THE REGULARIZED PROBLEM 

 The model of water-gas flow to be presented here is formulated in terms of the non- wetting (gas) phase 

saturation and the global pressure and it is developed in [2,3]. 

 The saturations of the wetting and the non – wetting phases are denoted by Sw and Sg = 1- Sw 

Relative mobility is j =  j (s), j ∈{w,g}. 

 The pressures and the mass densities of the wetting and the non- wetting phases are  

       denoted by Pw , Pg and  w,  g.  

 The wetting phase (water) is assumed incompressible  

(w = const) and the non – wetting (gas) phase is compressible  

  g = g (Pg) 

 The fully equivalent global pressure formulation of immiscible, compressible two – phase flow in [2,3] is 

defined in terms of the global pressure P.  

 The saturation potential   defined by  

 =  (S) =  𝑤 𝑆 𝑔
𝑠

𝑜
(𝑆)   Pc (s) ds                                   2.1 

Where Pc (S) = Pg , Pw is the capillary pressure function . 

 The global pressure P is a pressure like variable which allows to express the phase pressures Pw, Pg and the 

global pressures                       

Pw = Pw (S, P),  Pg = Pg (S, P). 

 The non – wetting phase mass density will be expressed as a function of S and P  

                   g  g (Pg(S, P)) = : g (S, P).  

 The phase pressures are given by [2] 

Pg (S, P) = P + Pc (0) +  𝑓𝑤
𝑆

𝑜
 (S,P) Pc (s) ds       2.2 

Pw (S, P) = Pg (S, P) - Pc (s)         2.3 

where the fractional flow functions are defined by, 

fw (S,P) = 
𝜌𝑤  𝑤  (𝑆)

 (𝑆,𝑃)
 

fg (S,P) = 
𝜌𝑔  (𝑆,𝑃)  𝑔  (𝑆)

 (𝑆,𝑃)
 

 The total mobility  (S, P) defined by 

                               (S, P) = w w(S)  g (S, P) g(S) 

 The water – gas flow equations fully equivalent global pressure formulation are described by the following 

equations [2]. 

 w 
𝜕𝑆

𝜕𝑡
    div (w(S, P)K  P)  div (A(S, P)K  )  

𝑤
2
  div (w(S) Kg) = Fw   2.4 

 
𝜕

𝜕𝑡
 (g(S,P)S)div(g(S,P)KP)div(A(S,P)K)div(g(S)g (S, P)

2
  Kg) = Fg                                         2.5  

Where  (x) is porosity, K(x) is the absolute permeability tensor of the porous medium, Fw ,Fg are source 

terms and g is gravity vector. 

 The coefficient A (S, P) is given by 
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 A(S, P) = w  g (S, P)     
 𝑤   (𝑆)𝑔  (𝑆)

 (𝑆,𝑃)
        2.6 

 The mobility functions w, g are given by 

w (S, P) = w w(S) ( S, P) 

g (S, P) = g (S, P)  g(S) ( S, P), 

where the function ( S, P) is defined by ([2], [3]) 

 (S,P)   = 
𝜕𝑃𝑤  (𝑆,𝑃)

𝜕𝑃
 =   

𝜕𝑃𝑔 (𝑆,𝑃)

𝜕𝑃
 

 Let a Porous domain  C R
d 
, d = 1, 2, 3 be bounded, connected, Lipschitz domain. 

   The domain boundary is considered to be decomposed as  

 = D   N 

 The time interval is (0, T) of Q =  x (0, T), i
T
     = i x (0, T), i   D, N. 

 The boundary conditions for the system as follows, 

  = D, P = PD on D
T
                                                                                            2.7 

Qw.n = Gw, Qn. n = Gg on N
T
                                                                                2.8 

Here PD, D, Gw and Gg are given functions, n is the outward unit normal to  and  

Qw = wqw  =  w(S, P)KP  A(S, P)K  
2

 w(S) Kg 

Qg = g (Pg) qg  =  g (S, P)KP  A(S, P)K  g (S, P)
2  
g (s) Kg

 

are the phase mass fluxes with qj being the volumetric velocity of the j – phase, j   w, g 

 The Dirichlet boundary data PD, D are assume to extended to the whole domain Q. 

The space W = {  L
2
 (0, T, H

1
 ())   L


 (0, T, L

1 
()), t   L

1 
(Q) } 

With the norm  

  =   𝐿2  (O,T,H
1
(Ω))+

 
 𝐿  (O,T,H

1
(Ω))+  𝜕𝑡 𝐿1 (Q)  

 Define SD = S (D), where S = 
1

 and PwD = Pw (SD, PD ), PgD = Pg (SD, PD) 

 The initial conditions are, 

  (x, 0) = 0 (x), P(x, 0) = po (x) in                                                                       2.9 

(A1) The porosity   L

 () and there exist constants 

T 

T 

T 

  2 

  w 
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 0 < m  M   ,  such that 0 < m   (x)  M a.e. in  

(A2) The permeability tensor K  (L


 ())
dxd

 , and there exist constants  

0  km   kM   , such that for almost all x   and all     R
d
  it holds: 

 km |  |
2
  K (x) .    kM |  |

2 

(A3)  Relative mobilities w, g  C ([0, 1] ; R
+
), w(Sw = 0) = 0 

and g (Sg = 0) = 0. j is an increasing function of Sj. There exist a constants  M   m   0 such that for    all S 

 [0, 1] 

0   m   w (S)  g (S)  M 

(A4) There exist a constants pc, min > 0 and M > 0 such that the capillary pressure function 

  S            Pc (s), Pc  C ( [0, 1) ; R
+
)  C

1
( (0,1) ; R

+
),  

for all S  (0, 1) satisfy  Pc  (S)  pc, min > 0                                                                2.10 

 Pc (S)
1

0
 ds +  𝑤  (𝑆)𝑔(𝑆)  Pc′ (S) M         2.11   

There exist S
#
  (0, 1) and   0 such that for all S  (0, S

#
 ) 

S
2

 Pc (S)   M,                                                                                      2.12 

Pc
'
 (S)  Pc (0)  M S Pc

'
 (S)                                                                  2.13 

 (A5) There exist 0 <  < 1 and C > 0 such that for all S1, S2  [0, 1] 

 C   𝑤   𝑆 𝑔   𝑆  𝑑𝑠
𝑆2

𝑆1
  τ  

  S1 -  S2  

(A6) w  0, g is a C
1
(R) increasing function and there exist  

 m, M  0 such that for all p R it holds 

m  g (p)  M, 0 < g
'
 (p) M 

(A7) Fw,  Fg  L
2
(Q), Fw  0  a. e. in Q 

(A8) The boundary and initial data satisfy 

 PD, PC (SD)  W, 0  SD  1 a.e in Q; 

  Gw, Gg L
2
 ( N) , Gw  0; 

 p0, 0  L
2 
(), 0  0  (1) a.e in  

Remark  2.1  
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 A consequence of incompressibility of the wetting phase, the restrictions on the capillary pressure Pc in (A4) 

are given only at S = 0, which is less strict compared to the corresponding assumptions in [4], where both phase are 

compressible. 

From assumptions, 

 PD , PC (SD)  W in (A8) if follows that the functions  

 PwD = Pw (SD, PD) and PgD = Pg (SD, PD) are also in the space W.  

That is   SD  W. 

Remark 2.2  

 In [2] that   is smooth function for which there is a constant C such that  

e
CS

  (s, p)  1 in [0, 1] x R                                              2.14 

 It follows from (3.10) and (A5) that S = 
1

 is Holder Continuous with exponent .  

  
𝑝𝑐

𝜏 ,𝑚𝑖𝑛

𝐶
    |S2  S1|  |  (S2)   (S1) |


                                              2.15 

 The Dirichlet boundary condition, introduce the space  

V = {uH
1
(), u | D  = 0 } 

III.REGULARIZED GLOBAL FORMULATION 

REGULARIZED PROBLEM 

 Introducing a regularized capillary pressure derivative, a regularized capillary pressure   and regularized phase 

pressure as follows: 

2 (1-S/) 
𝑃𝐶    −𝑃𝐶  (0)


  + [2

𝑆


 -1] Pc () for S   

R (Pc
 
(S)) = Pc  (S)    for   S 1- 

Pc (1-)    for 1-   S  1            3.1 

 

𝑃𝑐


 (S) = Pc (0) +  𝑅
𝑠

0
 𝑝𝑐


 (s)) ds          3.2 

 𝑃𝑔

 (S,P) = P + Pc(0) + 𝑓𝑤

𝑠

0
 (S, P) R  𝑝𝑐


  (s)) ds                  3.3 

 𝑃𝑤


  (S,P) = P -  𝑓𝑔
𝑠

0
 (S, P) R  𝑝𝑐

  (s)) ds       3.4 

Clear that   𝑃𝑔

 (S,P) - 𝑃𝑤


 (S,P) = 𝑃𝑐


 (S). 

In [4], for any    0, Pc (S) is bounded, monotone, C
1 
[0,1]) function 
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𝑃𝑐

 (S) = Pc (S) for S  [, 1]. 

For Small  it holds  

 
𝑑

𝑑𝑆
 𝑃𝑐


 (S)  PC, min /2 0         3.5 

 R 𝑃𝑐

 (S))  PC, max   +  

For some constant 𝑃𝑐,𝑚𝑎𝑥


 and there is a  constant M  1 such that  

  R (𝑃𝑐  (S)  M 𝑃𝑐  (S),  for S  (0,1)                                                       3.6 

The derivatives of the regularized phase pressures are equal in the non regularized case can be written as 

𝜕𝑃𝑔


𝜕𝑃
 = 

𝜕𝑃𝑤

𝜕𝑃
 =

 
(S,P).  

 𝑃𝑔

  = 

 
(S,P)  P + fw (S,P)  R (𝑃𝑐

 (S)  S                             3.7 

 𝑃𝑤

  = 

 
(S,P)  P – fg (S,P)  R (𝑃𝑐

 (S)  S                              3.8  

𝑃𝑔

, 𝑃𝑤


,   L

2 
(0,T; H

1
) )  for P,S  L

2 
(0,T; H

1
) ).  

Consider the regularized system (2.4) (2.5) in which replace  g (S, P) by 

𝑃𝑔

(S,P) : = 𝑃𝑔


(𝑃𝑔


(S,P))                            3.9 

and the function  A(S, P) by A

(S, P) for  > 0,  defined by 

A

 (S,P) =

w g  (S,P)

(S,P)
  w (S) g (S) R (𝑃𝑐

 (S)) +  0               3.10 

 Regularized system as 

-w  
𝜕𝑆

𝜕𝑡
 – div (𝑤

  (S
, 

P

) K P


) + div A

 
(S

, 
P

) K S


)+

𝑤
2   div (w (S


) Kg) = Fw   3.11 

  
𝜕

𝜕𝑡
 (

𝑔
  (S


, P


)S


)-div (𝑔

 (S
, 

P

)KP


)-divA


(S

,
P

)KS


)+ div (g (S


)

𝑔
 (S


,P


)

2 
Kg)=Fg  3.12 

Where 𝑤
   (S,P) = w w (S) 

 
(S,P) 

   𝑔
  (S,P) = g (S,P) g (S) 

 
(S,P)                      3.13 

 The regularized total mobility 



 (S,P) = 𝑤

  (S,P) + 𝑔
 (S,P)                 3.14 

and the regularized function  
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              
 

(S) =   w  (𝑠)g  (𝑠)
𝑆

0
     R 𝑃𝑐

 (s)) ds              3.15 

            Where S

 = (


)  1 

 Some uniform estimates and limits for regularized co-efficient proved in [ 4 ].  

 

 

 

Lemma (3.1) 

  Assume (A4) and (A6). Then three exists a constant C > 0. independent of , such that 

𝑃𝑔

(S,P)   C (P +1),  

𝑃𝑤

 (S,P)  P,         3.16 

W  (S) 𝑃𝑤

 (S,P)  C (P +1) 

e
-cs 
 

 
(S,P)   1 

and the following sequences converge uniformly in [0,1] x R as    0. 

𝑃𝑔

 (S,P)  Pg (S,P),  


 

(S,P)            (S,P)         3.17 

𝑗

  (S,P)       j (S,P),  j  {w, g}   

 (S)      

 (S) uniformly in [0,1]  

Remark : 3.2 

 The assumption on the boundary data PD, Pc(SD)  W in (A8). 

 PwD, PgD, (SD)  W. Define  𝑃𝑤𝐷


 = 𝑃𝑤


 (SD, PD,) and 𝑃𝑔𝐷


 = 𝑃𝑔


  (SD, PD,) and use (2.21), show that the norms 

|||PwD|||, |||PgD||| and ||| (SD)||| are uniformly bounded with respect to the parameter . 

For example, 

  𝑃𝑤

  D = 

 
(SD,PD)  PD + fg (SD,PD)  R (𝑃𝑐

 (SD)  SD by the estimate  

  𝑃𝑤

  D   PD  + M Pc

'
(SD)  (SD)  

leading to   𝑃𝑤

  D  L

2
 (0,T; H

1
) )    C (1 +  PD  L

2
 (0,T; H

1
) ) +  Pc (SD)   L

2
 (0,T; H

1
)) 

Then we have  

 (SD)        D  weakly  in L
2
 (0,T; H

1
)) as           0. 
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Theorem : 3.3   REGULARIZED GLOBAL FORMULATION 

 Let (A1) – (A8). Denote S = S(θ). Then there exists (P, θ)      

such that 

P  L
2
 (0, T; V) + PD, θ L

2 
(0, T; V) + θ D,   0 ≤ θ ≤   (1) a.e in Q 

t ( S)  L
2
 (0, T; V ),     t ( g (S, P) S)  L

2
 (0, T; V ); 

for all ,   L
2
 (0, T; V )  

-w   <  𝜕𝑡
𝑇

0
 (S),   dt + 𝑄  [ w (S,P) K P.]dxdt- A (S,P) K . ] dx dt - 𝑄  w (S) w

2
Kg.  dx dt 

 = 𝑄  Fw  dx dt - 
𝑁

𝑇  Gw  d dt        3.18 

 < 𝜕𝑡
𝑇

0
(g(S,P) S),dt +𝑄[g(S,P)K P]dxdt+A (S,P) K . ] dx dt - 𝑄  g (S) g

2
Kg.dxdt   

              = Fg  dx 𝑄𝑑𝑡 - Gg  d
𝑁

𝑇 dt       3.19 

Furthermore, for all V the functions   

t         Sdx,   t        g (Pg (S,P))  Sdx 

are continuous in 0, T and the initial conditions all satisfied in the following sense.  

    Sdx    (0) =    S0dx      

   g (Pg (S,P))  Sdx  (0) =  g  (Pg (s0, 0) s0  dx      where s0  = S (θ0) 

IV. A NEW GLOBAL FORMULATION 

 In this section, we extend the global pressure formulation in the general case and the purpose of this 

computation is to define a global pressure p such that (2.2) and (2.3) are exactly equivalent to a set of  

          two coupled equations. 

 Setting, 

𝑃𝑔

(S, P)   Pg(S, P), 

  

(S, P)  (S, P) 

                   𝑗


 (S, P)   j(S, P),          j  {w, g}  

 g (S, P) = g (S, P)  g(S) ( S, P) 

Now, it is easy to obtain an analytic solution of this problem, then A
n
(S,P) is well determined. 

 The rest of the computations to obtain the fractional flow formulations is the same as in section 3 with the 

difference that A(S,P) should be replaced as A
n
(S,P) in all coefficients. Then we obtain a new global pressure saturation 

formulation of the problem given by: 
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𝑃𝑤

  <  𝜕𝜏

𝑇

𝑂
(s), dt  +  [

𝑤


  (S,P) k po Q – A
n 
(S,P) Q ] dx dt-  

𝑄  𝑤


 (S) 𝜌𝑤
2  kg.  dx = 𝑄F𝑤


  dx dt - 

𝑁
𝑇  G𝑤


 d  dt      (4.1) 

 <  𝜕𝑡
𝑇

𝑂
 (𝜌𝑔


 (s,p) s,   dt + 𝑄  [𝑔

 (s,p) k po  +A
 

(s,p) k  ] dx dt 

− 𝑄  𝑔  (s) 𝜌𝑔

 (s,p)

2  
k g0 dx  = 𝑄  Fg dx  = 

𝑇
𝑁

 Ggd dt     (4.2) 

   Note that the expression of ω in the regularized formulation (3.18) and (3.19) are not simply related. It should 

be noted that this new formulation require to solve a family of ordinary differential equations which could numerically 

be done by using standard libraries existing in the literature. 

NUMERICAL COMPARISION 

 In this section we compare the coefficients numerically in regularized and new global pressure formulations. 

Data are chosen from the benchmark problem Couplex-Gaz [6] proposed by the ANDRA (the French National 

Radioactive Waste Management Agency), we consider the van Genuchten function with parameters n = 1.54 and P r = 2 

MPa. 

Differences between corresponding coefficients in PDEs (3.18)–(3.19) and (4.1)–(4.2) behave in a consistent 

way when varying the global pressure p, so that it is sufficient to represent one of them. We choose to present the 

diffusion coefficient A(S.P) from (3.18)–(3.19), and the corresponding diffusion coefficient A
n
(S,P) from (4.1)–(4.2). 

The two diffusion coefficients are presented in the right colon of Figure 1 to 4. In the left colon we plot gas 

pressure Λw
n
(S,P) from the new global formulation and the gas pressure Λw(S,P) given from the regularized global 

formulation, where hat denotes again that the water saturation is replaced by the capillary pressure. We present 

functions for three different fixed values of the global pressure p, namely, 2 MPa & 4 MPa. 

For p = 2 MPa, 

     

              Figure 1               Figure 2                         Figure 3  

     

              Figure 4                    Figure 5                           Figure 6 
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                Figure 7   Figure 8 

   From the behavior of coefficients we can draw several conclusions. If we look only at the error committed by 

calculating the coefficients in global pressure instead of gas pressure then we see that this error can be significant only 

when typical capillary pressure in the system is comparable to global or gas pressure. That may be the case for small 

operating pressures, for example in hydro-geological applications of water-air system. In the other hand that difference 

can be safely ignored in typical oil field conditions. Contrary to that the error committed in calculating gas density in 

(3.18) by replacing the gas pressure by the global pressure stays significant and leads to unacceptable loss of mass 

balance which is an important property of the physical solution. This can clearly be seen from the left colon of Figure 1 

to 4. 

V.CONCLUSION 

 A new global formulation is formulated for the immiscible compressible two-phase flow in porous media by 

the concept of global pressure and the formulations between the regularized and the new global one are compared 

numerically. 
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