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ABSTRACT: By making use of the principle of differential subordination, we introduce and study a new class for
higher-order derivatives of multivalent analytic functions in the open unit disk U. We obtain some interesting results of
this class. Also we derive some convolution properties in geometric function Theory.
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I. INTRODUCTION
Let R(p, m) denote the class of functions f of the form:

f(z) =2z + Z an4pz"*? (pme€N={12,..}), (D

n=m
which are analytic in the open unit disk U = {z € C: |z| < 1}. Upon differentiating both sides of (1) g-times with
respect to z, we obtain (see [1])

fO@ = 6@, + Y 80+ p a2, (@ €Ny =NU{0},p>q),
k=m

where
R ¢! G=0)
SGN =G/, {i(i—l)...(i—j+ 1) (#0)
For two functions f and g analytic in U, we say that the function f is subordinate to g, written f < gor f(z) <
g(z) (z € U), if there exists a Schwarz function w, analytic in U with w(0) = 0 and |w(z)| < 1 (z € U) such that
f(2) = g(w(z)), (z € U).In particular, if the function g is univalent in U, then f < g if and only if £(0) = g(0) and
fW) e gU).

If f € R(p,m) isgivenby (1) and g € R(p, m) givenooby
9@ =27+ ) b, (pmEN),
then the Hadamard product (or convolution) f * g ofnt:ié functions f and g is defined by
Fr D@D =7+ ) aropbuop?™ = (g N@).

A function f € R(1,m) is said to be starlike of orderno;?n U if and only if
Re {Zf (2)
f(2)

Denote the class of all starlike functions of order « in U by S*(«a).

}>a,(0£a<1,zEU).
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A function f € R(1, m) is said to be prestarlike of order a in U if
Z

Ty f@ES@ @<,

Denote the class of all prestarlike functions of order a in U by R(«a).
Clearly a function f € R(1,m) is in the class R(0) if and only if f is convex univalent in U and R (%) =S (1)

2
Let H be the class of functions h with h(0) = 1, which are analytic and convex univalent in U.
Recently, many authors have introduced and studied some new subclasses of analytic functions defined by various
linear operators, like, Dziok and Srivastava [2,3], Srivastava et al. [11,12], Patel et al. [8,9], Liu et al. [4,5,6], Wang et al.
[13] and Yang et al. [14]. Now we introduce the following subclass of R (p, m) for higher-order derivatives.
Definition 1:- A function f € R(p,m) is said to be in the class M(y,n,p, q, m; h) if it satisfies the subordination
condition:

A-yp- q)!<f(‘”(Z) 3 >+ ¥ — ) ( fe@
pl=np—q) \ z°79 pl=n@ -\ —q)zr-a!
Wherey e C,peEN,q eENy,p>q,0<n<pandh € H.
We need the following Lemmas in order to derive our main results for the class M (y,n,p, q, m; h).
Lemma 1:- [7] Let g be analytic in U and let h be analytic and convex univalent in U with h(0) = g(0). If

1 .
9(2) + PR (2) < h(2), (3)

77> < h(2), (2)

where Re(u) = 0 and u # 0, then
9(2) < h(z) = uz* f t*~Th(t)dt < h(z)
0

and h is the best dominant of (3).
Lemma 2:- [10]. Leta < 1, f € S*(a)and g € R(a). Then, for any analytic function F in U.

g*(fF) _

gT(U) C CO(F(U)),
where co(F(U)) denotes the closed convex hull of F(U).

Il. MAIN RESULTS

Theorem 1:- Let 0 < y; < y,. Then

M(YZ' np.qm, h) c M(Yl! np.qm h)
Proof: Let 0 <y; <y, and f € M(y3,n,p,q, m; h).

Suppose that
-9 (fP0()
9(2) = —— ) (4)
pl=n( -\ z°7
Then the function g is analytic in U with g(0) = 1.
Since f € M(y,,n,p, q, m; h), then we have
1-— — o) /f@ —a)! (q+1)
A-rI)@e-!(f _(Z)_ PR Cat) f (i)_ —n) < h), )
pl—n@—q! \ 279 pl=nl - O\ - qzr~17!
Differentiating both sides of (4) with respect to z and using (5), we have
(1-7)p— 9! (f(q)(Z) ) v2(p = q)! < fUt () ) Y2
-nl+ -n)= + < h(2).
pl=n@-q! \ 2771 Pl -\ -z 9(z) p—q"7 () =< h)
Hence, an application of Lemma 1 with u = py;q, yields
2
9(2) < h(2). (6)

Noting that 0 < :—1 < 1 and that k is convex univalent in U, it follows from (4), (5) and (6) that
2
f @
((p -zt n)
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_nlA-r)e-9! (f(‘”(Z) ) Y20 = @)! ( fUt(2) )] ( Y1>
+ - +11——)g(2) < h(z).

pl—n-! \ 220 ) -\ -zt Y2 9(2) < h(z)
Therefore, f € M(yy,1n,p,q,m; h) and the proof of Theorem 1 is complete. o

Theorem 2:- Let f € M(y,n,p,q,m; h),g € R(p, m) and
g 1
Re > E B (7)

VAS

then f « g € M(y,n,p,q, m; h).
Proof: Let f € M(y,n,p,q, m; h) and g € R(p, m). Then, we have

A-Ne-0 (@) \, vo-a ((F=9@)"™"
p' =1 —q)! R A e TR A R P
1-Ne-9! (9@ (f9@) Yo -9 (9(2) fUt(2) 9(2)
TPl — k- ! ( zP >*< zP =1 _n>+p! —n(p—q)!< zP >*<(p—q)zp“f‘1 —n> =< ) v, @)
where
(1 -Np - (f D) ¥ = q)! U9 (2)
i) = ~ 1 - 9! < P ) =0 - q)! ((p —qQzri ") <h@, ®)
From (7) note that the functlon %) has the Herglotz representation
9@ [ du(x)
Tz j|x|=1 1—xz (zel), (10
where u(x) is a probability measure defined on the unit circle |x| = 1 and
ﬁldmm=
x|=1
Since h is convex univalent in U, it follows from (8), (9) and (10) that
(1 ~-Ne-! ((F*9@)" yo-a! (F=9@) ™"
Z0Gp =) ( 21 -\ (ot 1) =) PR dkE) < k(.

This shows that f * g € M(y,n,p,q, m; h).o

Corollary 1:- Let f € M(y,n,p, q, m; h)be defined as in (1) and

c c+p 1
refie Y 2Pl 1
ct+tp+n 2

n=m

Then

k(z) = C:—letc‘l f®dt, (¢>-p)
0

is also in the class M (y,n, p, q, m; h).
Proof: Let f € M(y,n,p,q, m; h) be defined asin (1). Then

c+1 c+p - - c+p
k() = f e (t)dt_zp+2c+p+n =< + ) )(*Zm)

n=m n=m

= (f G)(Z). an

f(z) =2z + Z Apip2™*P € M(y,m,p,q, m; h)

c+p
6@ =2+ Y~ e rpm).
@ =2+ ) s EREm)
n=m

Note that
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G(2) - ct+tp 1
Re{zp}=R€{1+ZmZ}>z. (12)

n=m

From (11) and (12) and by using Theorem 2, we get k(z) € M(y,n,p,q, m; h).o

Theorem 3. Let f € M(y,n,p,q,m; h), g € R(p,m) and z! P g(z) € R(a), (e < 1). Then

f*g€My,np qmh).

Proof: For f € M(y,n,p,q,m; h) and g € R(p, m), from (8) (used in the proof of Theorem 2 ), we can write
A== (@) _\, yo-a (((+9@)"" \_(79@)* (@)
p!=n(p —q)! zp =4 N or=no -\ G-z )T Grg@)rz

where Y (z) is defined as in (9).

Since h is convex univalent in U, ¥(z) < h(z), g(z) € R(a) and z € S*(a), (a < 1), it follows from (13) and Lemma
2, we obtain the result.o

(13)

Theorem4:-Letf e M (y,n,p,q,m; %),with y>0and—-1<B<A<1.Then

—q ("1—Au p=a_ -q)! @ (g —q (14 Au p=a_
P14 w7 'du<Re k) ! _()—n <u w7 du. (14)
Yy Jo 1—-Bu pl—n— !\ zr1 Yy Jo 1+Bu
Proof: Let g be defined as in (4). Then the function g is analytic with g(0) = 1.
After a short calculation and considering that f € M (y, n,p,q,m; %), we can conclude that
4 , - 1+ Az
9(2) p—q29 @ <1757
An application of Lemma 1, yields
Q! (fDz _ —q 0= [1+At p=a_
) f_()_77 <R =P, j B
pl—np—g)'\ zp 4 14 1+ Bt
0
1 —
p—q (" 1+Azu P-4 4 1+ Az
= vy du< EU
14 J(,1+Bzuu Y118z (Z )
and h is the best dominant.
Now
—q)! @z —q ('14+Azu p=q_
Re{ - <f _()—n>}<sup Re{p qJ uv 1du}
pl—n—q)!\ zr Zel y Jy 1+Bzu
—q (! 1+ Azuy P=4_
< P14 sup Re (—)u v du
Yy Jo zev 1+ Bzu
1 -
p—q(1+Au =44
<— Y du, 15
y Jo 1+ Bu " “ (15)
and
—q)! @z —q (Y14 Azu p=q_
Re ©°—q) ! _()—n >infRep qJ wv du
pl—np—q'\ zP1 7€l y Jy 1+ Bzu
—q (! 14+ Azu\ P=q_
= P-4 inf Re (—)u v du
vy Sy zev 1+ Bzu
1 -
p—q (" 1—Au P=14
>— Y du. 16
y Jo 1-—- Bu" ¢ (16)
Combining (15) and (16), we get (14) and the proof is complete.a
Theorem 5:- Lety > 0,A>0and f € M(y,n,p,q,m; Ah+1—1). If A < Ay, where
p=q_ -1
Y LY SR 17
072 y Jo 1+u “l a7
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then f € M(0,n,p, q, m; h). The bound A, is the sharp when h(z) = i .
Proof: Suppose that

—a)! (q)
(- q)! (f (Z)—n)- (18)

Z) =
9(2) p!—n— !\ z°71
Let f € M(y,n,p,q,m; Ah+ 1 — 1) withy > 0and A > 0. Then, we have
Yo 1-Ne-! (D) Y = q)! fUrD(z)
9() + 29 (2) = T\ e 1) ! p—q-1
p—q pl=nlp—q)! \ z pl=n—-!'\(p -1z
By using Lemma 1, we have

g9(2)

n> <Ah(z)+1-A.

z

Ap—q) w0 [ oo
<2, K

14

Yh)dt +1 -2 = (h* $)(2), (19)

where

z ;q_l

Ap —q) - rtv
=— 7 Y

o) =L [

0
If 0 < 1< A4, where 45 > 1 is given by (17), then it follows from (20) that

dt+1—A. (20)

Ap - Lop-q_ 1 v
Re(qb(z)) = Q[ ul’yq 1pe (1 —
0

Now, by using the Herglotz representation for ¢ (z), from (18) and (19), we get

r-q! (f(q)(Z) )

—n| < (h=x z) < h(2).
e 1) < (9@ <k
Since h is convex univalent in U,then f € M(0,n,p, q, m; h).

For h(z) = 11: and f € R(p, m) defined by

Ap — lyy ! 1
)du+1—/1> (p q)f dut+1—21>-=
y o 1+u 2

-q_,

p-a) (fOQ \_Ap-q) @0 flT
p!—n(p—q)!(zp‘q - >_ y jl—t

dt+1-24,

we have

(1—V)(p—q)!(f(‘”(2)_ )+ y(@ =) ( fe@
pl—=n@—q! \ z°¢ pl=nl@—-!'\(p—qzr~1!
Thus, f € M(y,n,p,q,m; Ah + 1 — 4). Also, for 1 > 4, , we have

P—q
_ ! (@ A - 1 v 1
Re{ (0, <f (Z)_,,>}_) (py q)JO u1y+udu+1_/1<5 (z- 1),

n) =Ah(z)+1-A

pl=nl -\ 277
which implies that f & M(0,n,p, q, m; h). Therefore, the bound A, cannot be increased when h(z) = i and this
completes the proof of the theorem.o
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