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ABSTRACT:The purpose of this paper is to optimize post-tensioned concrete box girder bridge superstructures. 

Several variables are considered including cross-sectional dimensions of the girder, concrete strength, prestressing 

force, number of tendons, number of strands per tendon, tendons arrangement, and reinforcements of slabs. AASHTO 

Standard Specifications for Highway Bridges is considered for the purpose of loading, analyzing, and designing. The 

objective function consists of material and construction costs of concrete, prestressing steel, reinforcement, and 

formwork. A Particle Swarm Optimization (PSO) algorithm with adaptive inertia weight is developed to minimize the 

total cost of the bridges in a short time. Since constant design parameters influence the optimum design, a parametric 

study is conducted for different values of span length and deck width of the bridge. A comparison between the results 

obtained by a Genetic Algorithm (GA) and the PSO algorithm is conducted to show the efficiency of the proposed 

algorithm. 

 
KEYWORDS: Particle Swarm Optimization, Structural Optimization, Bridge Optimization, Prestressed Concrete 
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I.INTRODUCTION 

 

Because of their durability and economy of construction, prestressed concrete bridges are very common. Post-tensioned 

concrete box girders are popular among these bridges. In addition, single box arrangements are efficient for both 

longitudinal and transverse designs, and they may be counted as an economic solution for most medium and long span 

bridges [1]. As several variables are involved in designing of these types of bridges, a wide variety of designs are 

possible for a bridge with certain span length and deck width. In the traditional design method, designers use a trial and 

error process along with their experience resulting in a high cost, time, and human effort. The optimization techniques 

change the process of trial and error to a systematic and computer-based procedure that yields an optimum design in 

term of given criteria such as weight or cost, while considering all functional purposes of the design. 

 

During the past decades, considerable research has been conducted on optimization of different structures. Most of 

these studies are focused on weight minimization [2-5]. While weight of a structure constitutes a significant part of the 

cost, a minimum weight design is not necessarily the minimum cost design [6]. Since different materials including 

concrete and steel are involved in construction of concrete structures, optimization of these structures should be based 

on cost rather than weight [7]. 

 

In prestressed concrete design optimization, the problem is nonlinear requiring the use of nonlinear optimization 

procedures [8]. Early works on optimization of these structures have linearized the nonlinear problem [9-12]. A review 

of cost optimization of concrete and steel structures is presented by Adeli and Sarma[6]. Cost optimization of post-

tensioned prestressed concrete T-section beams was presented by Goble and Lapay[13] using gradient projection 

method. Kirsch [14] studied the minimum cost design of continuous prestressed concrete beams and solved it by the 

linear programming (LP) method. Naaman [15] compared minimum cost designs with minimum weight designs for 

prestressed rectangular beams and one-way slabs by using a direct search technique. Cohn and MacRae[16] presented 

the cost optimum design of simply supported RC and partially or fully pre-tensioned and post-tensioned concrete 

beams of fixed cross-sectional geometry using the feasible conjugate-direction method. Jones [17] minimized the cost 
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of precast, prestressed concrete simply supported box girders used in a multi-beam highway bridge using integer 

programming method. Cohn and Lounis[18] presented the cost optimization of partially and fully prestressed concrete 

continuous beams and one-way slabs based on the limit state design and projected Lagrangian algorithm. Torres et al. 

[19] optimized the cost of prestressed concrete highway bridges by using a linear programming method. Using general 

geometric programming, Yu et al. [20] presented the cost optimum design of a prestressed concrete box girder bridge. 

The previous procedure was also used by Barr et al. [21] to optimize the cost of a continuous three-span bridge RC slab. 

Lounis and Cohn [22] studied the cost minimization of highway bridges consisting of RC slabs on precast, post-

tensioned concrete I-girders using a three-level optimization approach. Further studies on cost optimization of bridges 

have been done by Lounis and Cohn [23-25]. Fereig[26] presented the minimum cost preliminary design of single span 

bridges consisting of cast-in-place RC deck and girders. The author linearized the nonlinear problem and solved it by 

the Simplex method. Sirca and Adeli[27] presented an optimization method to minimize the cost of the pretensioned 

PC I-beam bridge system. The nonlinear programming problem was solved by using a patented robust neural dynamics 

model. Ayvaz and Aydin [28] minimized the cost of a pretensioned PC I-girder bridge using a genetic algorithm by 

considering 9 different variables and a total of 28 constraints. Ahsan et al. [29] presented the cost optimum design of 

post-tensioned I-girder bridges by considering 14 different variables, 28 explicit constraints, and 46 implicit constrains 

using an evolutionary operation (EVOP). Kaveh et al. [30] proposed a modified colliding bodies optimization 

algorithm to minimize the cost of the post-tensioned concrete bridges. Abbasi et al. [31-34] carried out an extensive 

study about seismic behavior of post-tensioned reinforced concrete bridges with different configurations including, 

straight, skewed, and curved with equal and unequal pier heights. 

 

In this study, cost optimum design of post-tensioned concrete box girder bridge superstructures is presented. The cost 

objective function includes the material and construction costs of concrete, prestressing steel, reinforcement, and 

formwork. Concrete strength is taken a design variable, so unit cost of concrete is assumed a function of concrete 

strength. AASHTO Standard Specifications for Highway Bridges [35] is used for analysis and design the bridge 

superstructure in both longitudinal and transverse directions. Instead of using a lumped sum value, all instantaneous 

and long-term prestress losses are calculated based on AASHTO formulas. Particle Swarm Optimization with adaptive 

inertia weight has been used in this paper to solve the optimization problem. A comparison between the optimum 

results of the PSO and the genetic algorithm is presented. Finally, as constant design parameters influence the optimum 

design, a parametric study is carried out for different values of constant parameters. 
 

II. PROBLEM FORMULATION 

 

The cast-in-place post-tensioned concrete box girder bridge which is simply supported is assumed to be constructed 

using span-by-span method. In defining the optimization problem, 17 different variables, 34 explicit constraints, and 

106 implicit constraints are considered which are introduced in the subsequent sections. 

 
A) Design variables and constant parameters 

 

The variables considered in this study are concrete strength, cross-sectional dimensions of the box girder, number of 

strands per tendon, number of tendons in each web, arrangement of tendons, prestressing force, and reinforcements of 

slabs. Since concrete strength is considered a design variable, modulus of elasticity of concrete is a function of concrete 

strength. Design variables are tabulated in Table 1, and a typical cross-section of the assumed bridge with some of the 

variables is shown in Figure 1.The constant design parameters considered in this study are span length, deck width, 

post-tensioning anchorage system, AASHTO live loads, superimposed dead loads, and properties of the materials 

except concrete strength. 15 mm diameter seven-wire low relaxation strands are used for tendons, and the Freyssinet C-

range anchorage system is used for post-tensioning the tendons [36]. The constant design parameters are shown in 

Table 2. 

 

Configuration of tendons significantly affects flexural stresses and prestress losses at different sections. Number of 

strands per tendon, number of tendons, number of anchorages in each row, and lowest anchorage position are defined 

as variables to cover various tendons configuration. Longitudinal profiles of tendons along the span vary as parabolic 

curve in the webs of the girder. As shown in Figure 2, in addition to cross-sectional dimensions, configuration of 

tendons at the end and middle sections depends on different parameters including duct size, anchorage spacing, and 
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anchorage edge distances. According to Freyssinet post-tensioning system, these parameters are function of number of 

strands per tendon which is assumed as a design variable in this study. Anchorage spacing and anchorage edge distance 

are also function of concrete strength, and minimum vertical anchorage distance to bottom fiber is related to jack 

dimension. These parameters for a concrete strength of 40 MPa are shown in Table 3. 

 

 

Fig. 1. Box girder cross-section. 

Table 1. Design variables and explicit constraints. Table 2. Constant design parameters. 

No. Variable Explicit constraint 

1 Concrete strength,  fc' (MPa) 35 ≤  fc' ≤ 50 

2 Girder depth, h (m) 1.5 ≤  h≤ 4 

3 Top slab thickness, Tt (cm) 17.5 ≤  Tt ≤ 35 

4 Bottom slab thickness, Tb (cm) 17.5 ≤  Tb ≤ 30 

5 Web thickness, Tw (cm) 25 ≤  Tw ≤ 50 

6 Length of cantilever, Lc (m) 1 ≤  Lc ≤ 1/4W 

7 End thickness of cantilever, Tc (cm) 17.5 ≤  Tc ≤ 30 

8 Initial thickness of cantilever, Ts (cm) 20 ≤  Ts ≤ 50 

9 Length of haunch, Lx (cm) 50 ≤  Lx ≤ 200 

10 width of haunch, Ly (cm) 25 ≤  Ly ≤ 50 

11 Number of strands per tendon, Ns 5 ≤  Ns ≤ 25 

12 Number of tendons in each web, Nt/2 1 ≤  Nt/2 ≤ 10 

13 Number of anchorages in each row, NA 1 or 2 

14 Lowest anchorage position, y1 (cm) ymin≤  y1 ≤ 100 

15 Prestressing force,   (% of fy*) 0.75% ≤    ≤ 0.90% 

16 Top slab reinforcement ratio, s min ≤  s ≤ max 

17 Cantilever slab reinforcement ratio, c min ≤  c ≤ max 
 

Constant parameter Value 

Span length (L) 30,40,50,and 60 m 

Deck width (W) 8,10,12,and 14 m 

Concrete strength at transfer (fci') 0.7 fc' 
Tensile strength of prestressing steel(fpu) 1860 MPa 

Yield strength of prestressing steel (fy*) 0.9fpu 

Yield strength of reinforcement steel (fy) 400 MPa 

Unit weight of concrete 2400 kg/m3 

Unit weight of Steel 7850 kg/m3 

Modulus of elasticity (E) of concrete 5 'cf GPa 

E of prestressing steel  193 GPa 

E of reinforcement steel 200 GPa 

Wobble coefficient (K) 0.00066 /m 

Friction coefficient (μ) 0.25 

Anchor set 5 mm 

Live loads HS20-44 

Design traffic lane width 3.65 m 

Barrier width 45 cm 

Barrier load 500 kg/m 

Thickness of asphalt wearing surface  8 cm 

Unit weight of asphalt wearing surface 1730 kg/m3 

Thickness of end diaphragms 80 cm 

Relative humidity (RH) 50% 

Manhole Length 1.6 m 

Manhole Width 1 m 
 

 

Table 3. Minimum dimensions for Freyssinet C-range anchorage system (mm) for  fc'=40 MPa. 

Number of strands per tendon (Ns) 5-7 8-9 10-12 13 14-19 20-22 23-25 

Duct size (D) 65 70 85 85 100 110 115 

Horizontal anchorage spacing (x) 370 422 472 503 587 649 690 

Vertical anchorage spacing (y) 267 305 341 364 424 469 498 

Horizontal anchorage edge distance (xe) 213 239 264 280 322 352 373 

Vertical anchorage edge distance (ye) 162 181 199 210 240 262 277 

Minimum anchorage distance to bottom fiber (ymin) 230 230 230 230 269 347 347 
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Fig.2..Tendons arrangement at  the end and middle sections. 

 
B) Objective function 

 

The goal of the optimization problem is to minimize the cost of the bridge superstructures. Material and construction 

costs of concrete, prestressing steel, reinforcement, and formwork are considered in the objective function as follows: 

LW

CACWCWCV
C

ffrrpspscc

T
.

.... 
 (1) 

Where CT is the total cost of the box girder per square meter of the deck. Vc ,Wps, Wr , and Af are volume of concrete, 

weight of prestressing steel, weight of reinforcements, and surface area of formwork, respectively.  Cc , Cps , Cr , and Cf 

are unit material and construction costs of concrete, prestressing steel, reinforcement, and formwork, respectively. 

The unit costs of different materials are shown in Table 4. Analysing the prices of concrete with different strengths, a 

linear function is estimated for unit cost of concrete. In calculation of weight of reinforcement steel, all reinforcements 

including shrinkage and temperature, computational tensile, distribution, and shear reinforcements are taken into 

account.  

 

C) Explicit constraints 

 

Explicit constraints are lower and upper bounds of the design variables based on geometrical restraints, construction 

limitations, and code requirements. In Table 1, all of the explicit constraints considered in this paper are summarized. 

Lower limit of concrete strength (fc') is assumed 35 MPa since, according to Freyssinet, minimum concrete strength at 

transfer (fci') is 24 MPa(fci'= 0.7fc'). Because of practical restrictions, concrete strength is assumed no greater than 50 

MPa. Minimum depth of the girder is 1.5 m to resist flexural and shear stresses, and its maximum is 4 m from the 

aesthetic point of view. The top slab thickness has a lower limit of 17.5 cm to accommodate reinforcements and to 

transfer truck wheel load, and has an upper limit of 35 cm. The minimum web thickness is 25 cm to facilitate 

concreting and consolidating, and the maximum value is assumed 50 cm to avoid a too heavy bridge. The maximum 

length of cantilever is one-fourth of the bridge width, and the minimum is set to 1 m. It is assumed that the number of 

strands per tendon varies from 5 to 25. The prestressing force is applied as a percentage of yield strength of prestressing 

steel (fy*). For this study, the prestressing force is considered no less than 0.75fy* for efficient use of prestressing steel, 

and the upper bound is 0.9fy* according to AASHTO.  
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D)Implicit constraints 

 

These constraints are formulated according to AASHTO standard specifications to control the performance 

requirements of the bridge. The superstructure is designed in both longitudinal and transverse directions; in longitudinal 

direction, we deal with a prestressed concrete design, and in transverse direction, with a reinforced concrete design. The 

total 106 implicit constraints in this study is are categorized into 8 groups, and are explained in the following. 

 

 Flexural working stress constraints 

 

Stresses in the top and bottom fibers of concrete should not exceed the allowable tensile and compressive stresses. The 

related implicit constraints are defined as follows: 

c ≤  ≤ t    (2) 

S

M

S

eF

A

F


.
    (3) 

Where  ,  c ,and t are working stress, allowable compressive stress, and allowable tensile stress respectively; F is 

prestressing force ; A is cross-sectional area of the girder; e is tendons eccentricity; M is working moment; and S is 

section modulus. 

Allowable stresses are controlled for 4 load conditions (Table 5) and in 5 critical sections along the girder span (Figure 

3). Section at midspan (section 1); section after the anchor set (section 2); section at the end of transition zone assumed 

1.5h (section 3); section immediately after the diaphragm assumed 0.8 m (section 4); end section (section 5). 

 

Table 4. Unit costs of materials. 

Item unit Unit cost 

Cc per m3 $ 0.59 fc'+17.91 

Cps per ton $ 3000 

Cr per ton $ 636 

Cf per m2 $ 7.12 

 fc': 28-day compressive concrete 

strength (MPa) 
 

Table 5. Different load conditions and related implicit constraints. 

No. Working Stress Implicit Constraint 

1 
S

M

S

eF

A

F Dii 
.

  '009.0'55.0 cici ff   (MPa) 

2 
S

MM

S

eF

A

F SIDee 


.
  '019.0'40.0 cc ff   (MPa) 

3 
S

MMM

S

eF

A

F LSIDee 


.
  '019.0'60.0 cc ff   (MPa) 

4 
S

MMM

S

eF

A

F LSIDee 


)(5.0.5.05.0
  '019.0'40.0 cc ff   (MPa) 

Note: Fi=prestressing force after instantaneous losses; Fe= prestressing force after all 

losses; MD, MSI and ML=working moments of dead, superimposed and live loads. 
 

 

Since prestress losses are functions of the design variables, all prestress losses are calculated according to AASHTO 

formulas rather than using estimates of total losses for greater precision. Prestress losses are categorized into two 

groups; instantaneous losses and long-term losses. Instantaneous losses which occur during prestressing the tendons 

and transferring the prestress force to the concrete member are including friction loss, elastic shortening loss, and 

anchorage seating loss. Long-term losses which occur during the service life of the member are losses due to concrete 

shrinkage, creep of concrete, and relaxation of prestressing steel. 
 

 

 
 

 

 

 

 

 

 

Fig. 3. Critical sections along the span and the profile of the tendons. 
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 Allowable stress in prestressing steel constraints 

 

These constraints control tensile stresses in the pressing steel. According to AASHTO, allowable stress in prestressing 

steel immediately after seating at anchorage is 0.7fpu, at the end of the seating loss zone is 0.83fy*, and at service load 

after all losses is 0.80fy*. The related implicit constraints are as follows: 

(1-1) pu

s

i f
A

F
7.05        (4) 

(1-2) 
*2 83.0 y

s

i f
A

F
       (5) 

(1-3) 
*2 80.0 y

s

e f
A

F
       (6) 

WhereF5i and F2iare prestressing forces at sections 5 and 2 after instantaneous losses, respectively.  F2e is prestressing 

force at section 2 after long-term losses, and Asis the total area of prestressing steel. 

 

 Ultimate flexural strength constraints 

 

The flexural strength of the girder is controlled at four different sections (section 1 to 4). These constraints are based on 

the Ultimate Strength Design (USD) method and are as follows: 

(1-4) nu MM      (7) 

Where Mu is factored bending moments at different sections, and φMn is flexural strength of the section which φ is 

strength reduction factor for flexure. 

 

 Ductility constraints 

 

The total amount of prestressing steel should be adequate to develop an ultimate moment at the critical section at least 

1.2 times the cracking moment Mcr*. The minimum prestressing steel constraints are considered at sections 1 to 4 and 

are as follows: 

(1-5) ncr MM *2.1
    (8) 

Where Mcr* andφMn are cracking moment and ultimate moment, respectively.AASHTO states that prestressed concrete 

members shall be designed so that the steel is yielding as the ultimate capacity is approached. To meet this requirement, 

the reinforcement index shall not exceed 0.36β1. The maximum prestressing steel constraints are considered at sections 

1 to 4, and are as follows, where ω is reinforcement index, and  β1 is a concrete strength factor. 

 

(1-6) ω ≤ 0.36β1     (9) 

 

 Ultimate shear strength constraints 

 

The shear strength of the girder is controlled at four different sections (section 1 to 4). The section at 0.25h is also 

checked to compute shear reinforcement. These constraints are as follows, Where Vu ,Vc,  and Vsare factored shear force 

at different sections, nominal shear strengths provided by concrete, and shear reinforcement, respectively. φis strength 

reduction factor for shear. 

(1-7) 
)( scu VVV 

     (10) 
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 Deflection constraint 

 

The long-term deflection of the box girder is calculated in midspan, and is limited as follows, where Δ is deflection in 

midspan, and L is the span length. 

(1-8) 800

L


     (11) 

 Slab design constraints 

 

Three slabs including top, bottom, and cantilever slabs are designed based on ultimate strength design method. The 

related implicit constraints are the same as Equation (7). 

 

 Cantilever slab deflection constraint 

 

Deflection of cantilever slab is limited as follows: 

(1-9) 300

cL


     (12) 

Where  Δ is deflection at the end of the cantilever, and Lc is the length of cantilever. 

 

E) The optimization problem 

 

The optimization problem is determined by 17 variables, 34 explicit constraints, 106 implicit constraints, and a cost 

objective function explained in the preceding sections. The objective function and most of the implicit constraints are 

nonlinear functions of the design variables requiring the use of nonlinear optimization procedures. During the past 

several decades, many mathematical linear and nonlinear programming methods have been developed for solving 

optimization problems. Some of these methods search for a local optimum by moving in a direction related to the local 

gradient. Other methods apply the first and second-order necessary conditions to seek a local minimum by solving a set 

of nonlinear equations. For the optimum design of large structures, these methods become inefficient due to a large 

amount of gradient calculations [6]. Therefore, an advance optimization technique is required to locate the global 

minimum in a short time without being entrapped in local minima. 

 

III. PARTICLE SWARM OPTIMIZATION 

 
Particle swarm optimization (PSO) is a simple and effective algorithm for optimizing a wide range of functions. 

Conceptually, the PSO seems to lie somewhere between Genetic Algorithm (GA) and evolutionary programming [37]. 

The PSO utilizes the real-number and the global communication among the swarm particles. Therefore, it is easier to 

handle in comparison with GAs as there is no need to encode or decode the parameters into binary strings [38]. The 

algorithm contains number of particles, each which is a possible solution for the objective function. Particles are 

initialized randomly in the search space. In each iteration, the velocities of particles are updated by means of their best 

encountered positions, and the best position encountered by the particles using the following formula [39 and 40]: 

(1-10) 
)()( 2211

1 k

i

k

g

k

i

k

i

k

i

k

i

k

i XPrCXPrCvv  
         (13) 

Where k

iP (personal best) is the best previous position of the ith particle in the kth iteration, and k

gP  (global best) is the 

best global position among all the particles in the swarm in the kth iteration. r1 andr2 are random values, uniformly 

distributed between zero and one. C1 andC2 are the cognitive and social scaling parameters, respectively, and k

i is the 

inertia weight used to discount the previous velocity of the particle. The position of each particle is updated in each 

iteration by adding the velocity vector to the position vector as: 

11   k

i

k

i

k

i vXX                                                                                                                               (14) 
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Where 
k

iX  and 
1k

iv  represent the current position and velocity vectors of the ith particle, respectively. Velocity 

vectors vi are limited to a lower bound vmin and an upper bound vmin. Different techniques have been used to set some of 

the PSO parameters, such as fuzzy systems [41], self-adaptation [42] and deterministic adaptation based on personal 

and global bests [43]. Ratnaweera et al. [44] proposed a time-varying acceleration coefficient (TVAC), which reduces 

the cognitive component and increases the social component of acceleration coefficient with time. A large value of C1 

and a small value of C2 at the beginning may improve the exploration ability, and a small value of C1 and a large value 

of C2 allow the particles converge to the global optimum in the later part of the optimization. A nonlinear function is 

used to calculate C1 and C2 according to the following equations:  

n

iter

iter
CCCC ])[(

max

minmaxmax1                                                                                           (15) 

m

iter

iter
CCCC ])[(

max

minmaxmax2                                                                             (16) 

Where Cminand Cmaxare the lower and upper bounds for both C1and C2. Here, iter is the current iteration number and 

itermaxis the maximum number of allowable iterations. According to the type of the problem, n and m can be chosen to 

get more efficient results. In this paper, n and m are taken to 1 and 2 respectively, also Cminand Cmax are chosen 2.4 and 

2.7, respectively. The velocities of all the particles are limited to the range specified by vminand vmaxwhich are equal to 

4)( maxmin XX  . An adaptive strategy based on the ranks of particles in each iteration has been used in order to 

define inertia weight [45]. 

particlesofnumber

rankik

i  )( minmaxmin    (17) 

Where min and max are the lower and upper bounds of inertia weight. ranki is the position of the ith particle when the 

particles are sorted based on their fitness values. The rationale behind this formula is that the positions of the particles 

are adjusted in a way that the best particles move more slowly compared to the worst ones [46]. The flowchart of the 

algorithm is shown in Figure 4. 

 

 
Fig. 4. The flowchart of adaptive PSO algorithm. 

 

IV. OPTIMIZATION RESULTS 

 

In this section, several bridges with different span lengths and deck widths are optimized using the proposed PSO 

algorithm and a comparison between the performance of PSO and GA is conducted. The whole analysis and design 

process is conducted automatically and only the size and number of rebars are manually selected based on the required 

steel amount. The cross-section of the optimum design of a bridge with the span length of 50 m and the deck width of 

12 m and its shear reinforcements along the girder span for half of the span are shown in Figure 5 and 6. As seen in the 

figures, the girder depth is 3.21 m which accommodates anchorages in one column, and the thick webs provided 

adequate space to place two tendons in each row. Web thickness and initial thickness of cantilever stick to their upper 

limits. In addition, a total 168 prestressing seven-wire strands are used for the whole section. 
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Fig. 5 Optimum post-tensioned concrete box girder bridge cross-section. 
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Fig. 6. Shear reinforcements of the optimum design. 

 

Fig. 7. The convergence history of the PSO and GA. 

 
Since the constant design parameters influence the optimum design, this optimization is carried out for different values 

of span length and bridge width. The optimum results for four different span lengths of 30, 40, 50, and 60 m with the 

deck width of 12 m are summarized in Table 6. As shown in Figure 8, optimum cost increases almost linearly with 

raising the span length, and for all of the span lengths the result of PSO is better than GA. Ascending curves in Figure 9 

show that in order to obtain an optimum cost for a longer span, a higher concrete strength is required. In addition, by 

elongation of span length, depth and depth to span ratio of superstructure increase as shown in Figure 10 and 11. The 

amount of prestressing steel also increases almost linearly as shown in Figure 12. As it can be seen, the curves of PSO 

and GA are approximately similar in most of the cases which shows that there must be a meaningful relationship 

between span length and different variables.  
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The results of this optimization for four different bridge widths of 8, 10, 12, and 14 m with the span length of 50 m are 

summarized in Table 7.According to Figure 13, as the bridge width increases, optimum cost is nearly increased, and 

stronger concrete is generally picked up by the algorithms for wider deck (see Figure 14). The amount of prestressing 

steel also increases as shown in Figure 15. It is worth-mentioning that in Figures 13, the curves of PSO and GA are 

closely matched, while for all the bridge widths the optimum cost based on PSO is lower than GA.   

Table 2. Optimum designs for different span lengths. 

variable unit 
L=30 L=40 L=50 L=60 

GA PSO GA PSO GA PSO GA PSO 

fc' MPa 37 36 37 43 40 48 43 50 

h m 1.68 1.69 2.45 2.33 3.19 3.21 3.81 3.92 

Tt cm 30 34 28 33 25 28 29 23 

Tb cm 21 21 20 19 20 19 20 19 

Tw cm 49 50 47 50 50 50 49 50 

Lc m 2.48 2.44 2.50 2.63 2.52 2.71 2.58 2.68 

Tc cm 23 20 25 26 22 24 24 19 

Ts cm 50 50 50 50 50 50 50 50 

Lx cm 157 160 170 158 149 140 152 160 

Ly cm 26 25 26 25 25 25 27 25 

Ns - 18 7 11 17 21 21 11 16 

Nt/2 - 3 8 6 4 4 4 10 6 

NA - 2 2 2 2 1 1 2 1 

y1 cm 40 23 24 49 51 56 100 37 
  % 76 75 76 76 77 76 82 78 

 - 0.0096 0.0075 0.0118 0.0072 0.0138 0.0101 0.0101 0.0157 

 - 0.0027 0.0026 0.0028 0.0029 0.0027 0.0029 0.0028 0.003 

Cost $/m
2
 101.8 101.0 117.6 115.2 132.7 131.2 149.7 147.7 

 

  
Fig. 8. Relation between optimum cost and span length. Fig. 9 Relation between concrete strength and length. 

 

  
Fig. 10. Relation between depth and span length. Fig. 11 Relation between depth to span ratio and length. 
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Fig. 12. Relation between prestressing steel and span length. 

 

Table 3. Optimum designs for different bridge widths 

variable unit 
W=8 W=10 W=12 W=14 

GA PSO GA PSO GA PSO GA PSO 

fc' MPa 35 35 37 41 40 48 50 49 

h m 3.17 3.10 3.38 3.12 3.19 3.21 2.77 2.63 

Tt cm 27 30 26 29 25 28 30 35 

Tb cm 18 18 18 18 20 19 25 25 

Tw cm 39 38 45 45 50 50 48 50 

Lc m 1.98 2.00 2.44 2.50 2.52 2.71 2.79 2.77 

Tc cm 18 18 23 18 22 24 27 28 

Ts cm 43 43 49 50 50 50 50 50 

Lx cm 88 81 109 103 149 140 192 200 

Ly cm 26 25 27 27 25 25 25 25 

Ns - 18 14 21 13 21 21 19 18 

Nt/2 - 3 4 3 5 4 4 6 7 

NA - 1 1 1 1 1 1 2 2 

y1 cm 52 55 71 32 51 56 68 58 
  % 83 84 78 79 77 76 76 80 

 - 0.0059 0.0047 0.0084 0.0065 0.0138 0.0101 0.0126 0.0092 

 - 0.0029 0.0029 0.0027 0.0029 0.0027 0.0029 0.0039 0.0030 

Cost $/m
2
 119.0 118.5 119.8 118.4 132.7 131.2 150.1 150.3 

 

  
Fig. 13. Relation between concrete strength and width. Fig. 14. Relation between optimum cost and width. 
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Fig. 15. Relation between prestressing steel and width. 

Table 4. Optimum designs with different concrete unit 

costs for a bridge with the span length of 60 m and deck 

width of 12 m 
Var. unit 1Cc 2Cc 3Cc 4Cc 5Cc 

fc' MPa 50 35 35 35 35 

h m 3.92 2.94 2.84 2.80 2.74 

Tt cm 23 30 27 25 23 

Tb cm 19 21 22 22 22 

Tw cm 50 50 35 36 33 

Lc m 2.68 2.38 2.39 2.40 2.39 

Tc cm 19 18 18 19 18 

Ts cm 50 50 50 50 50 

Lx cm 160 156 163 163 164 

Ly cm 25 25 25 25 25 

Ns - 16 15 22 22 18 

Nt/2 - 6 6 4 4 5 

NA - 1 2 1 2 2 

y1 cm 37 61 38 75 64 
  % 78 81 80 81 82 

 - 0.0157 0.287 0.362 0.427 0.562 

 - 0.003 0.071 0.071 0.072 0.071 

Cost $/m
2
 147.7 158.3 182.1 204.4 225.7 

 

  

 

V. CONCLUSIONS 

 

Cost optimum design of post-tensioned concrete box girder bridge superstructures is presented in this study. 17 

different variables and a total of 140 constraints are considered based on AASHTO standard specifications and 

construction limitations. The objective function consists of material and construction costs involved in the bridge 

construction including concrete, prestressing steel, reinforcement, and formwork. Instead of using a lumped-sum value, 

all prestress losses are calculated by the code formulas for a greater precision. The Particle Swarm Optimization 

algorithm has been successfully used to solve the optimization problem, and in a short time an optimum design is 

obtained. In the bridge optimization problem with many variables and constraints, the viability of the PSO is 

demonstrated. The comparison between the PSO and the GA shows that the proposed PSO is more effective in finding 

an optimum solution. 

 

Moreover, a parametric study is also conducted to investigate the effect of different values of span lengths and bridge 

widths on the optimum design. It is shown in the previous section that there is a meaningful relationship between span 

lengths of optimum bridges and some design variables. For instance, the depth of superstructure has an almost linear 

relation with span length, also concrete strength and number of strands increase with raising the bridge length. It is 

worth mentioning that the optimum cost linearly changes with the span length. Furthermore, cost, concrete strength, 

and number of strands increase as deck width of the bridge becomes larger. We have conducted this study based on 

specific design parameters and predetermined unit costs; however, it is possible to apply this optimization to a bridge 

with desired characteristics and unit costs. 
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