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ABSTRACT: An approach of estimation of parameters had been introduced in 2011 where the usual principle of least 

squares is applied to each parameter separately. This is done, for each parameter, by obtaining one model, containing 

the single parameter to be estimated. Later on this approach was termed in 2014 as stepwise least squares method. The 

principle involved in the approach has been termed in 2015 as elimination-minimization principle.  The approach has 

already been applied successfully in fitting linear and quadratic curves to numerical data. This paper describes the 

method of fitting of a polynomial curve to numerical data by the approach. 
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I. INTRODUCTION 

 

The method of least squares is indispensible and is widely used method of curve fitting to numerical data. The method 

of least squares was first discovered by the French mathematician Legendre in 1805 [Crafton (1870),   Glaisher (1872), 

Mansfield (1877a , 1877b), Stigler (1977 , 1981) et al} and it has been established with the works of the renowned 

statistician Adrian (1808), the German Astronomer Gauss {Gauss (1809a , 1809b , 1929),  Hall (1970), Buhler (1981), 

Sheynin (1979), Sprott (1978),  Stigler (1977), et al], the mathematicians viz. Ivory (1825), Hagen (1837), Bassel 

(1838), Donkim (1857), Herscel (1850), Crofton (1870) etc..  

In fitting of a curve by the method of least squares, the parameters of the curve are estimated by solving the normal 

equations which are obtained by applying the principle of least squares with respect to all the parameters associated to 

the curve jointly (simultaneously). However, for a curve of higher degree polynomial and / or for a curve having many 

parameters, the calculation involved in the solution of the normal equations becomes more complicated as the number 

of normal equations then becomes larger. Moreover, in many situations, it is not possible to obtain normal equations by 

applying the principle of least squares with respect to all the parameters simultaneously. These lead to think of 

searching for some other approach of estimation of parameters. For this reason, an approach of estimation of 

parameters had been introduced (Dhritikesh, 2011) where the usual principle of least squares is applied to each 

parameter separately. This is done, for each parameter, by obtaining one model, containing the single parameter to be 

estimated. Later on, this approach was termed as stepwise least squares method (Dhritikesh, 2014). The principle 

involved in the approach has been termed in 2015 as elimination-minimization principle (Atwar & Dhritikesh, 2015a). 

The approach has already been applied successfully in fitting linear and quadratic curves to numerical data {Atwar & 

Dhritikesh (2015a , 2015b , 2015c , 2015d)}.  In the current study, the approach has been applied in the fitting of 

polynomial curve to numerical data. This paper describes the method of fitting of a polynomial curve. 

 

II. METHOD OF FITTING 

 

Here the general polynomial curve specifically the curve defined by the polynomial  

Y = a0 + a1 X + a2 X 
2
 + …………….+ ak X 

k
 

in X of degree k where a0, a1, a2, ……………. ,ak are the parameters, is taken into consideration. 

Here, the two operators namely ∆ and R have been used with the following definitions: 

                                         ∆Yi =  Yi + 1   ̶   Yi   &   R (Y : X)  = Y/X                                                                           (2.1) 
At first, let us consider the case where observations on Y are distributed around a constant (parameter)   i.e. the 

observations 𝑦𝑖  (i = 1 , 2 , 3 ,  …………. , n) on Y satisfy 

                                              𝑦𝑖  =   + ei   ,   (i = 1 , 2 , 3 ,  …………. , n).                                                          (2.2) 

where ei is the deviation/error associated to the observation 𝑦𝑖  . 
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In order to apply the principle of least squares to estimate  , it is required to minimize S with respect to   where  

                                                         S = 


n

i 1

 ei 
2
 = 



n

i 1

(𝑦𝑖  - )
2
                                                                                     

Application of this yields the least squares estimate )( NE



of   as  

                                                               )( NE



 =  
n

1



n

i 1

𝑦𝑖                                                                                  (2.3)    

Now, let {( 𝑥𝑖  , 𝑦𝑖 ) , (i = 1 , 2 , 3 ,  …………. , n)} be n pairs of observations on (X , Y).  

The problem is to find out a method, other than the usual method of least squares, of estimating the parameters of the 

polynomial curve described by Equation (2.1). 

First, let us consider the case of fitting of linear curve. 

The mathematical curve considered here is of the form 

                                                               Y =  +  X                                                                                           (2.4) 

where   &   are the parameters to be estimated on the basis of the observed data. 

If the number of observations is more than 2, they need not necessarily satisfy the theoretical linear curve properly. 

Moreover, observations may suffer from error. Thus the observations satisfy the model  

                                    𝑦𝑖=  +  𝑥𝑖  + ei   ,  (i = 1 , 2 , 3 ,  …………. , n)                                                         (2.5) 

where ei is the deviation/error component. 

This yield                                                  ∆𝑦𝑖  =  ∆ 𝑥𝑖  + ∆ ei  

i.e.                                            𝑦𝑖 (1) =  + ei (1)                                                                                                  (2.6)  

where            𝑦𝑖 (1) =  R(∆𝑦𝑖  :  ∆ 𝑥𝑖 )   &   ei (1) =  R(∆ ei  :  ∆ 𝑥𝑖 )   ,    (i = 1 , 2 , 3 ,  …………. , n - 1). 

This is of the form (4.2). 

Therefore, the least squares estimate of  is found as 

                                                    
)(EM




= 
1

1

n





1

1

n

i

𝑦𝑖 (1)                                                                                (2.7)  

                                                        = some value v1, say 

Substituting the estimate 
)(EM




 of  in (4.6), one obtains that 

                                                                   𝑦𝑖  =   + v1 𝑥𝑖  + ei  

 i.e.                                               𝑦𝑖 ( 𝑥𝑖  , v1) =   + ei                                                                                         (2.8)  

where                                        𝑦𝑖 ( 𝑥𝑖  , v1)  =  𝑦𝑖   v1 𝑥𝑖    ,   

for  (i = 1, 2, 3………….. n). 

This is also of the form (4.2). 

Therefore by the same logic as in the case of (4.2) in Case-1, the estimate )( EM



 of   becomes 

                                                         )( EM



= 
n

1



n

i 1

𝑦𝑖 ( 𝑥𝑖  , v1)                                                                        (2.9)  

Next, let us consider the case of fitting of quadratic curve. 

The mathematical curve considered here is of the form 

                                                             Y =   +  X +  X 
2
                                                                            (2.10)  

where  ,   &    are the parameters to be estimated on the basis of observed data.  

If the number of observations is more than 3, they need not necessarily satisfy the theoretical quadratic curve properly. 

Moreover, observations may suffer from error. Thus the observations satisfy the model 

                                                           𝑦𝑖=  +   𝑥𝑖  +   𝑥𝑖
2 
+ ei                                                                     (2.11) 

 for (i = 1, 2, 3………..… n). 

where ei  is the  deviation/error component. 
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This yield                                            ∆𝑦𝑖  =  ∆ 𝑥𝑖   +  ∆ 𝑥𝑖
2
 + ∆ ei 

 

    

 i.e.                                                𝑦𝑖 (1) =   +   𝑥𝑖
2
 (1) + ei (1)                                                                 (2.12) 

where                                                    𝑦𝑖 (1) = R (∆𝑦𝑖  :  ∆ 𝑥𝑖 )   ,    
                                                                                            𝑥𝑖

2
 (1) = R (∆ 𝑥𝑖

2
:
 
 ∆ 𝑥𝑖 )   

                                                        &   ei (1) = R (∆ ei: ∆ 𝑥𝑖 )   

for  (i = 1, 2, 3……..… n - 1). 

This is a linear equation in x. 

This further yield                                                 𝑦𝑖 (2) =   + ei (2)                                                                (2.13)        

where                                                            𝑦𝑖 (2) = R (∆ 𝑦𝑖 (1) :  ∆ 𝑥𝑖
2
 (1))    

                                                                &   ei (2) = R (∆ ei (1):  ∆ 𝑥𝑖
2
 (1))  

for  (i = 1, 2, 3……….… n - 2). 

This is of the form (4.2). 

Therefore, the estimate of   becomes 

                                                
)( EM




= 
2

1

n





2

1

n

i

𝑦𝑖 (2)                                                                                (2.14)  

                                                          = some value v2, say 

Substituting the estimate 
)( EM




 of  in (4.13), one obtains that 

                                                 𝑦𝑖 (1) =   + v2  𝑥𝑖
2
 (1) + ei (1) 

 i.e.                                           𝑦𝑖 ( 𝑥𝑖
2
 (1), v2) =  + ei                                                                                  (2.15)  

where                                     𝑦𝑖 ( 𝑥𝑖
2
 (1) , v2)  =  𝑦𝑖 (1)   v2  𝑥𝑖

2
 (1)  

(i = 1, 2, 3………….… n  1). 

This is also of the form (4.2). 

Therefore, the estimate of   becomes 

                                          
)( EM




= 
1

1

n





1

1

n

i

𝑦𝑖 ( 𝑥𝑖
2
 (1), v2)                                                                 (2.16)  

                                                     = some value v1, say 

Again, substituting the estimate 
)( EM




of   in (4.12), one obtains that 

                                        𝑦𝑖=  + v1 𝑥𝑖  + v2 𝑥𝑖
2 
+ ei                             

  i.e.                                 𝑦𝑖 ( 𝑥𝑖  ,  𝑥𝑖
2
, v1, v2) = 


 + ei                                                                                 (2.17)   

where                         𝑦𝑖 ( 𝑥𝑖  ,  𝑥𝑖
2 
 , v1 , v2) =   𝑦𝑖  v1 𝑥𝑖   v2 𝑥𝑖

2
  

for  (i = 1, 2, 3………….. n). 

This is also of the form (4.2). 

Therefore, the estimate of  becomes 

                                            
)(EM




= 
n

1



n

i 1

𝑦𝑖 ( 𝑥𝑖  ,  𝑥𝑖
2
, v1, v2)                                                                (2.18)  

                                                      = some value v0, say 

Next, let us consider the case of fitting of cubic curve. 

The mathematical curve considered here is of the form 

                                                 Y =   +   X +   X 
2
 +   X 

3
 + e                                                           (2.19) 

where  ,  ,    &   are the parameters to be estimated on the basis of observed data.  

If the number of observations is more than 4, they need not necessarily satisfy the theoretical linear curve properly. 

Moreover, observations may suffer from error. Thus the observations satisfy the model 

                               𝑦𝑖  =   +   𝑥𝑖  +   𝑥𝑖
2 
+   𝑥𝑖

3
 + ei                                                      (2.20) 
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for (i = 1, 2, 3………… n). 

where ei  is the  deviation/error component. 

This yield                               ∆𝑦𝑖  =  ∆ 𝑥𝑖   +  ∆ 𝑥𝑖
2
 +  ∆ 𝑥𝑖

3
 + ∆ ei  

i.e.                                           𝑦𝑖 (1) =   +    𝑥𝑖
2
 (1) +   𝑥𝑖

3
 (1) + ei (1)                                                (2.21) 

where                                               𝑦𝑖  (1) = R (∆𝑦𝑖  :  ∆ 𝑥𝑖 )  ,  
                                                                                  𝑥𝑖

2
 (1) = R (∆ 𝑥𝑖

2
: ∆ 𝑥𝑖 )  ,   

                                                                                  𝑥𝑖
3
 (1) = R (∆ 𝑥𝑖

3
: ∆ 𝑥𝑖 )  

                                                   &   ei (1) = R (∆ ei: ∆ 𝑥𝑖 ) 

for  (i = 1, 2, 3………… n-1). 

This yield                              ∆ 𝑦𝑖  (1) =   ∆ 𝑥𝑖
2
 (1) + ∆ 𝑥𝑖

3
 (1) + ∆ ei (1) 

 i.e.                                        𝑦𝑖  (2) =   +   𝑥𝑖
3
 (2) + ei (2)                                                                      (2.22) 

where    𝑦𝑖  (2) = R (∆ 𝑦𝑖 (1): ∆ 𝑥𝑖
2
 (1))   , 

 𝑥𝑖
3
 (2) = R (∆ 𝑥𝑖

3
 (1):  ∆ 𝑥𝑖

2
 (1)) 

&   ei (2) = R (∆ ei (1): ∆ 𝑥𝑖
2
 (1)) 

for  (i = 1, 2, 3………… n--2). 

This further yield 

                                         ∆ 𝑦𝑖  (2) =   ∆ 𝑥𝑖
3
 (2) +∆ ei (2) 

 i.e.                                                         𝑦𝑖 (3)  =   + ei (3)                                                                         (2.23)              

where                                              𝑦𝑖  (3) = R (∆ yi (2): ∆xi
2 
(2))   

                                                   &   ei (3) = R (∆ ei (2): ∆ xi
2
(2)) 

for (i = 1, 2, 3………… n - 3). 

This is of the form (4.2). 

Therefore, the estimate of   becomes 

                                                     
)( EM




) =  




3

1

)3(
3

1 n

i

iy
n

                                                                    (2.24)  

                                                                  = some value v3, say 

Substituting the estimate 
)( EM




of a3 in (4.22), one obtains that 

                                                         )2()2()2(
3

3 iii
exvy    

  i.e.                                                 )2()),2((
3

3

iii
evxy                                                            (2.25) 

where                             )),2((
3

3
vxy

ii
)2()2(

3

3 ii
xvy      

for  (i = 1, 2, 3………….. n-2). 

This is also of the form (4.2). 

Therefore, the estimate of  becomes 

                                              
)( EM




= 




2

1

3

3
)),2((

2

1 n

i

ii vxy
n

                                                                 (2.26)  

                                                         = some value v2, say 

Again, substituting the estimate 
)( EM




of  in (4.21), one obtains that 

)1()1()1()1(
3

3

2

2 iiii
exvxvy   

 i.e.                                   )1(),),1(,),1((
32

322

iiiii
evvxxxy                                                   (2.27)  

where                  
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                                 )1()1()1(),),1(,),1((
3

3

2

232

322

iiiiiii
xvxvyvvxxxy    

for (i = 1, 2, 3………..… n - 1). 

This is also of the form (4.2). 

Therefore, estimate of  becomes 

                                      
)(EM




=  




1

1

32

322
),),1(,),1((

1

1 n

i

iiii vvxxxy
n

                                              (2.28)  

                                                 = some value v1, say 

Again, substituting the estimate 
)(EM




of   in (4.20), one obtains that 

                                    
iiiii

exvxvxvy 
3

3

2

21
                                                     

 i.e.                              evvvxxxy
iiii

),,,,,(
321

32
                                                                  (2.29)  

where                  
3

3

2

21321

2
),,,,(

iiiiiii
xvxvxvyvvvxxy   

 for (i = 1 , 2 , 3 ,  …………. , n). 

This is also of the form (4.2). 

Therefore, estimate of  becomes 

                                        
)( EM




= 


n

i

iiii vvvxxxy
n 1

321

32
),,,,,(

1
                                                       (2.30)  

                                                  = some value v0, say 

Now, the case of fitting of a polynomial (of degree k) curve is considered. 

The mathematical curve considered here is of the form                               

                                      Y = 
0

 + 
1

 X + 
2

  X 
2
 + ……………. + 

k
 X 

k
                                               (2.31) 

where 
0

 ,
1

 , 
2

  , ………. , 
k

  are the parameters to be estimated on the basis of observed data.  

If there are more than (k + 1) observations, they need not necessarily satisfy the theoretical linear curve properly. 

Moreover, observations may suffer from error. Thus the observations satisfy the model 

                   
i

k

ikiiii
exxxxy  

3

3

2

210
                                         (2.32)  

for  (i = 1, 2, 3………….. n). 

where ei  is the  deviation/error component. 

This yield  

i

k

ikiiii
exxxxy  

3

3

2

21
  

This can be expressed as 

                    
)1()1()1()1()1(

3

3

2

21 i

k

ikiii
exxxy  

                             (2.32)                                        

where                           

),:()1(
iii

xyRy   

),:()1(
22

iii
xxRx   

):()1(
33

iii
xxRx    

……………………….. , 

):()1(
i

k

i

k

i
xxRx   

&  ):()1(
iii

xeRe   

(i = 1, 2, 3……… n - 1). 
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This yields  

)1()1()1()1()1(
3

3

2

2 i

k

ikiii
exxxy    

   i.e.                )2()2()2()2(
3

32 i

k

ikii
exxy                                               (2.34)  

where                            

)),1(:)1(()2(
2

iii
xyRy   

))1(:)1(()2(
233

iii
xxRx   

……………………….. , 

))1(:)1(()2(
2

i

k

i

k

i
xxRx   

&  ))1(:)1(()2(
2

iii
xeRe   

(i = 1, 2, 3…….… n - 2). 

This yield  

)2()2()2()2(
3

3 i

k

ikii
exxy    

 i.e.                                              )3()3()3(
3 i

k

iki
exy                                         (2.35) 

where                            

)),2(:)2(()3(
3

iii
xyRy   

)),2(:)2(()3(
344

iii
xxRx   

……………………….. , 

))2(:)2(()3(
3

i

k

i

k

i
xxRx   

& ))2(:)2(()3(
3

iii
xeRe   

(i = 1, 2, 3…….… n - 3). 

Continuing the process, one can arrive at the (k1)
th

 step that  

)2()2()2()2(
1

1





kekxkxky

i

k

ik

k

iki
  

i.e.                                       )1()1()1(
1




kekxky
i

k

ikki
                                           (2.36)  

where      

))2(:)2(()1(
1




kxkyRky
k

iii
   

&  ))2(:)2(()1(
1




kxkeRke
k

iii
 

(i = 1, 2, 3…….… n – k  + 1). 

At the k
th

 step, one obtain hat  

)1()1()1(  kekxky
i

k

iki
  

 i.e.                                             )()( keky
iki

                                                                                 (2.37)   

where      

                                              ))1(:)1(()(  kxkyRky
k

iii
   

                                        &  ))1(:)1(()(  kxkeRke
k

iii
 

(i = 1 , 2 , 3 ,  …………. , n - k). 

This is of the form (4.2). 

Therefore, estimate of 
k

 becomes 
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k




 = 
kn 

1





kn

i 1

𝑦𝑖  (k)                                                                               (2.38)  

                                                        = some value vk, say 

Substituting the estimate 
k




of 
k

  in the similar equation obtained at the earlier step, one can obtain the estimate of

1k
 . Then substituting the estimate 

1k



of 
1k

 and 
k




of 
k

  respectively in the similar equation obtained at the 

earlier step, one can obtain the estimate of
2k

 . Continuing the process, one can obtain the estimates of 
2k

  , 

1k
 , ………… , 

2
  , 

1
 , 

0
  stepwise. The estimates will be as follow 

                                                
1k




= 
1

1

 kn






1

1

kn

i

𝑦𝑖  ( 𝑥𝑖
k
 (2) :  vk)                                                    (2.39) 

                                                        = some value vk – 1, say 

where                            𝑦𝑖  ( k - 1)   
k

  𝑥𝑖
k
 (k - 1)   

                              𝑦𝑖  ( 𝑥𝑖
2
 (1) ,  𝑥𝑖

2
,  𝑥𝑖

3
 (1), v2, v3)     

                                               
2k




= 
2

1

 kn






2

1

kn

i

𝑦𝑖  ( 𝑥𝑖
k
 (2)  :  vk - 1 , vk)                                          (2.40)  

                                                        = some value vk – 1, say 

                       𝑦𝑖  (k - 1)  = 
1k

 + vk  𝑥𝑖
k
 (k - 1) + ei (k - 1)                                                    

    i.e.                     𝑦𝑖  ( 𝑥𝑖
k
, vk) = 

1k
 + ei (k - 1)                                                                                          (2.41)   

where                𝑦𝑖  ( 𝑥𝑖
k
 , vk) = 𝑦𝑖 ( k - 1)  vk  𝑥𝑖

k
 (k - 1)   

                          (i = 1, 2, 3………… n1). 

This is of the form (4.2). 

Therefore, the estimate of 
1k

 becomes 

                                                      
1k




= 
1

1

n





1

1

n

i

𝑦𝑖  ( 𝑥𝑖
k
, vk)                                                                 (2.42)  

Again substituting the estimate 
1k




of 
1k

 in (4.35), one obtains that 

                        𝑦𝑖  (k - 1)  = 
1k

 + vk  𝑥𝑖
k
 (k - 1) + ei (k - 1)                                                       

  i.e.                              𝑦𝑖  ( 𝑥𝑖
k
, vk) = 

1k
 + ei (k - 1)                                                                                     (2.43)  

where                          𝑦𝑖  ( 𝑥𝑖
k
 , vk) = 𝑦𝑖  ( k - 1)  vk  𝑥𝑖

k
 (k - 1) 

                             (i = 1, 2, 3………… n1). 

This is of the form (4.2). 

Therefore, the estimate of 
1k

 becomes 

                                                      
1k




= 
1

1

n





1

1

n

i

𝑦𝑖  ( 𝑥𝑖
k
, vk)                                                                (2.44)  

Substituting the estimate
k




 of 
k

 and 
1k




of
1k

 respectively in the earlier equation and applying the same logic 

one can get the estimate of 
2k

 . 

Continuing the process, one can get the estimates of the remaining parameters. At the last two stages, one will get that 

                           
1




= 
1

1

n





1

1

n

i

𝑦𝑖  ( 𝑥𝑖
2
,  𝑥𝑖

3
, ……, 𝑥𝑖

k
 : v2 , v3 , …… , vk)                                           (2.45)   

                                 = some value v1, say. 
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0




= 
n

1



n

i 1

𝑦𝑖  ( 𝑥𝑖  ,  𝑥𝑖
2
, ……, 𝑥𝑖

k
 : v1 , v2 , …… , vk)                                                    (2.46)  

                                 = some value v0, say. 

Steps in the Method: 

In this method, the estimates of the parameters are to be computed in the following order:   

First, estimate vk  of the parameter ak . 

Then, estimate vk - 1 of the parameter ak – 1 using the estimate vk  already obtained. 

…………………………………………………………………………………….. 

Next, estimate vs of the parameter as using the estimates vk , vk – 1, ….. , vs + 1 already obtained. 

Next, estimate vs‒1 of the parameter as‒1 using the estimates vk , vk – 1, ….. , vs already obtained. 

…………………………………………....................................................................... 

Next, estimate v1 of the parameter a1 using the estimates vk , vk – 1, ….. , v2 already obtained.  

Finally, estimate v0 of the parameter a0 using the estimates vk , vk – 1, ….. , v1 already obtained. 

 

III. Numerical Application: 

  

Example 3.1:   Consider the following observations on X and Y:  

Table-2.1 

xi  : 0 0.5 0.7 1.0 1.6 2.0 2.1 2.5 3.1 4.0 

yi  : 0.2 1.7 2.4 3.3 5.1 6.3 6.4 7.6 9.4 12.3 

 

In order to fit the linear curve  

Y = a0 + a1 X 

(where a0 & a1 are the parameters) 

to these data, the following table is to be constructed:  

Table-2.2 

  ∆  ∆  

(1) 

(  , v1)   ∆  ∆

 

(1) (  , v1) 

0 0.2 0.5 1.5 3.0 -1.001234568 2.0 6.3 0.1 0.2 2 2.975308640 

0.5 1.7 0.2 0.7 3.5 1.993827160 2.1 6.5 0.4 1.2 3 1.974074072 

0.7 2.4 0.3 0.9 3 2.991358024 2.5 7.7 0.6 1.8 3 1.969135800 

1.0 3.3 0.6 1.8 3 2.987654320 3.1 9.5 0.9 2.8 3.1111 1.961728392 

1.6 5.1 0.4 1.2 3 2.980246912 4.0 12.3    2.950617280 

      Total 

= 

17.5 

Total 

= 

55.0 

  Total  = 

27.0111111 

Total  = 

24.78305064 

 

Then by the formula (2.7), 

Estimate of a1  = 
9

1



9

1i

(1) = 3.001234568 = v1  ,  say 

     

Next, we are to compute the values of  (  , v1) where 

 (  , v1)  =    v1  

=   3.001234568  

 (i = 1, 2, 3……..… 10). 

The values, computed, have been shown in Table-2.2.  

Then by the formula (2.9), 
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Estimate of a0 =  
 10

1



10

1i

 (  , v1) = 2.478305064 

Thus the linear curve fitted (by the principle of least squares) to the observations becomes 

Y = 2.478305064 + 3.001234568 X 

Example 3.2:  Consider the following observations on X and Y:  

Table-2.3 

xi  : 0 1 3 4 7 8 10 12 

yi  : 5 9 19 30 69 84 124 175 

 

In order to fit the quadratic curve  

Y = a0 + a1 X + a2 X 
2
 

(where a0 . a1 & a2  are parameters) 

to these data, the following table is to be constructed:  

Table-2.4 

 

  ∆  ∆
2
 ∆  

2
 (1) (1) 

2
 (1) ∆ (1) (2) (

2
 

(1) , v2) 

(  ,
2 
, 

v1 , v2) 

0 5 1 1 4 1 4 3 1 0.3333 2.937 5 

1 9 2 8 10 4 5 3 6 2 0.748 6.425 

3 19 1 7 11 7 11 4 2 0.5 3.559 4.897 

4 30 3 33 39 11 13 4 2 0.5 1.307 6.944 

7 69 1 15 15 15 15 3 5 1.6666 - 0.945 6.329 

8 84 2 36 40 18 20 4 5.5 1.375 0.866 3.872 

10 124 2 44 51 22 25.5    2.114 2.588 

12 175          3.784 

Total 

= 45 

        Total 

= 

6.375 

Total 

= 10.586 

Total 

= 39.839 

 

Then by the formula (2.14), 

Estimate of a2  = 
6

1



6

1i

 (2) 

 
= 1.063 = v2, say

 

Next, we are to compute the values of (
2
 (1), v2) where 

 (
2
 (1), v2)  =  (1)   v2 

2
 (1) 

=  (1)   1.062 
2
 (1) 

(i = 1, 2, 3………… 7).  

The values, computed, have been shown in Table-2.4. 

Then by the formula (2.16), 

Estimate of a1  = 
7

1



7

1i

(
2
 (1) , v2)  = 1.512 =  v1 , say 

Next, we are to compute the values of (  , 
2
, v1, v2) where 

 (  , 
2
, v1, v2) =   v1   v2

2
 

(i = 1, 2, 3………..… 8).  

The values, computed, have been shown in Table-2.4.  

Then by the formula (2.18), 
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        Estimate of a0 = 
8

1



8

1i

 (  , 
2 
 , v1 , v2) = 4.98 = v0 , say 

Thus the quadratic curve fitted (by the principle of least squares) to the observations becomes 

Y = 4.98 + 1.512 X + 1.063 X
2
  

       

IV. CONCLUSION: 

 

(1) The approach has been found suitable for finding of method of fitting of a polynomial curve of any finite order to  

      numerical data. .  

(2) It is yet to be investigated whether this approach can be applicable in finding of suitable method of fitting of a curve  

     other than polynomial curve to numerical data. 

(3) It is yet to be search for whether the estimates of parameter obtained by this method and those obtained by usual  

      method of least squares are identical.  
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