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ABSTRACT: In this paper, we combine the objective function of three methods together and propose a new method, 

called supervised discrimination sparse neighborhood preserving embedding (SDSNPE). The proposed method can 

preserve the local and global manifold structure of the samples simultaneously. In addition, the supervised information 

is introduced into the neighborhood preserving embedding (NPE) and sparse preserving projection (SPP), it not only 

can preserve the sparse reconstruction relationship between samples and also can use the discriminate information 

included in the sparse coefficients to help to achieve feature extraction. Finally, experiments on target HRRP samples 

demonstrate the effectiveness of our proposed method. 

 

KEYWORDS: High resolution range profile, Neighborhood preserving embedding, Maximizing margin criterion, 

Sparse preserving projection. 

I. INTRODUCTION 

The ability to detect and locate targets on a day/night, all weather bases, over wide areas, has long made radar system a 

key sensor in many military and civilian applications. We find that the utility of the information supplied by a radar 

system would be hugely enhanced if targets could additionally be recognized. The HRRP is the amplitude of the 

coherent summations of the echoes from target scatters in each range cell, which represents the projection of target 

scattering centres on the radar line of sight (RLOS). It contains the target structure signatures, such as target size, 

scatter distribution, etc., Therefore, the target HRRP recognition has received intensive attention by the radar automatic 

target recognition (RATR) community [1]-[5]. The target HRRP is often confronted with very high-dimensional data, 

in order to avoid small sample size (SSS) problem and curse of dimensionality, feature extraction is performed before 

the recognition, which can reduce the dimensionality of HRRP greatly and the extracted features are expected to have 

the properties of effectiveness, robustness and feasibility with tolerable computational complexity. 

As the three sensitivities and the influence of radar parameters and working environment, the HRRP is highly nonlinear 

[2][3], which makes the traditional linear methods not fit for the feature extraction of HRRP. The kernel function and 

manifold learning are two mainly studied nonlinear feature extraction methods [4][6]-[8]. Manifold learning assume the 

local samples can be represent as linear and then extend the local linear to the global linear under different function 

criterions. Although they can deal the sample nonlinear problem, the existing manifold learning methods can only 

preserve either the local or global manifold structure of the samples, can‟t preserve them simultaneously in the phase of 

feature extraction. 

In this paper, we introduce the supervised information into NPE and SPP, which can preserve the sparse reconstruction 

relationship of the samples, and based on the objective function of three methods propose a new SDSNPE method, it 

not only can preserve the local and global manifold structure of the samples simultaneously, also can extract the 

nonlinear features of HRRP. Extensive experiments on three target HRRP datasets show that the performance of our 

method outperforms the others. 
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II. REVIEW OF THE RELATED METHODS 

A. The Neighborhood Preserving Embedding 

 

NPE [6] is a linear approximation to the LLE [7], it aims at preserving the local manifold structure. The algorithmic 

procedure is mainly consists of four steps. Firstly, constructing a neighborhood graph G based on the k-nearest 

neighbor or the neighbor within ε radius. Secondly, computing the reconstruction weights, according to the adjacency 

graph G, every sample in training set is reconstructed by the linear combination of its weighted neighbors. Let W 

denote the weight matrix, the weight Wij, the edge from node i to node j, can be computed by minimizing the following 

objective function 

 
( ) ( )

   . . 1
k i k i

i ij j ij

i j x j x

x W x s t W
  

   
 （1） 

where ( )k ix  is the k nearest neighbors set of xi. Thirdly, we fix the weight matrix W while optimizing the coordinates 

yi. Suppose that there exists a linear transformation yi=u
T
xi, where u is the basis vector, the basis vector u is computed 

by solving the minimization problem 

 
* arg min    

T T

T TU

U XMX U
U

U XX U


 （2） 

where ( ) ( )TM I W I W   , 1 2[ , ,..., ] m n

nX x x x R    be the data matrix including all the training samples 

in its columns. The optimal u is given by the minimum eigenvalue solution to the following 

generalized eigenvalue problem 

 
T TXMX u XX u  （3） 

Finally, the basis vectors 
1 2[ , ,..., ]dU u u u  of the d-dimensional subspace correspond to the d smallest eigenvectors of 

the Eq. (3). The d-dimensional embedding is computed by the formulation 
TY U X . 

The NPE is an unsupervised dimensionality reduction algorithm; it can only preserve the local neighborhood structure 

of the data manifold and can‟t preserve the global structure of the data manifold. Moreover, the NPE can‟t find the 

discriminant structure in the sample space effectively. 

B. The Sparse Preserving Projection 

 

Sparse preserving projection (SPP) [9] is a method to design the weight matrix W straightforwardly based on the theory 

of sparse representation (SR). For the sake of the pages, here we don‟t review the concept of SR and in the reference [9] 

the method is discussed in details. The SR expect to reconstruct the sample xi using as few samples as possible and the 

sparse reconstructive weight vector si for each sample xi can be obtain through the following modified l1 minimization 

problem 

 
1

ˆ min   . .  ,    1
i

i i i i i
s

i

s s s t x Xs s   
 （4） 

where ,1 , 1 , 1 ,[ ,..., ,0, ,..., ]T

i i i i i i i ns s s s s   is a n-dimensional vector in which the i-th element is equal to zero, implying 

that the xi is removed from X, and the elements ,i js , i j  denote the contribution of each xj to reconstructing xi; the sum 

of all the elements in si is one. After computing the sparse weight vector îs for each sample xi, we can define the sparse 

reconstruction weight matrix S as 1 2
ˆ ˆ ˆ[ , ..., ]T

nS s s s . The element îs  in S is not simple similarity measure between 

samples xi and xj, and in this sense S is essentially different from the weight matrix W in NPE. As the analysis in [9], 

the weight matrix S reflects some intrinsic geometric properties of the samples and discriminant information can be 

naturally preserved in weight matrix S. In order to preserve the characteristics in the embedding space, similar to NPE, 
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defining the following objective function to seek the projections which best preserve the optimal weight vector îs . 

 

2

1

ˆmin
n

T T

i i
U

i

U x U Xs



 （5） 

With simple algebraic formulation and impose a constraint to avoid degenerate solutions, the objective function can be 

written as 

 

( )
min

T T T T

T TU

U X I S S S S X U

U XX U

  

 （6） 

The optimization problem boils down to a generalized eigenvalue problem like in NPE. 

C. The Maximizing Margin Criterion 

The MMC [10] based on a new feature extraction criterion; it can maximize the margin between classes and get better 

class separability. Moreover, it doesn‟t suffer the small size samples (SSS) problem, which is known to cause serious 

stability problems in linear discriminant analysis (LDA). Let c and ni denote the number of classes and the number of 

samples in class i. The intuition of MMC is to maximize the distances between class means and minimize the within 

scatter of classes in the projected space. The between-class scatter matrix, within-class scatter matrix and the objective 

function are defined as follows  

 1
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Note that the Eq. (9) may also use other constraints instead, For example, if we add the constraint T

wU S U I  and then 

maximize the T

bU S U . It easy to see that with such a constraint, MMC in fact results in LDA. In order to keep the same 

with the constraint in the objective functions of the above two methods, and avoid the SSS problem. We define the 

constraint used here the same as in NPE and SPP. Through the objective function in Eq. (9), it easy to find the MMC 

only considering the global properties of the samples, it may lose the local geometric information of the samples and 

project the samples in an incorrect subspace. 

III. SUPERVISED DISCRIMINATION SPARSE NEIGHBORHOOD PRESERVING EMBEDDING 

 

As we know, the NPE and SPP are unsupervised methods with subspace learning characteristic, the information 

provided by the class labels of the training data can be used to guide the procedure of dimension reduction and describe 

the intrinsic structure of training data in low-dimensional space. Therefore, we introduce the supervised information 

into the NPE and SPP first and then propose a new objective function based on the objective functions of the above 

three methods. The supervised NPE has the same steps with NPE except the step of constructing the neighborhood 

graph G. Here, we only give out the analysis of how to construct the neighborhood graph. In original NPE, it selects the 

neighbors based on the distance between the sample xi and xj, we use the label information of the samples and select the 

neighbors xj of data point xi from the class that xi itself belongs to. That is to say, the neighbors of a sample in per class 

will always be picked from that same class. Like the supervised NPE, we introduce the supervised information into 

SPP. In the supervised SPP, all the atoms used to sparse representation of xi will always be picked from the same class 

with xi, the sparse weight vector îs  is redefined as follows 

 
1

ˆ min   . .  ,  ( )  ,   1
i

i i i k i i i
s

i

s s s t x X s label x k s    
 （10） 

where kX  denotes all the samples in class k,  ( )  ilabel x k denotes the label of xi is k. Next, we will analysis the 

scatter matrices under the view of normalized graph Laplacian [12]. The total scatter matrix is equal to the sum of 
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between-class scatter matrix and within-class scatter matrix 

 

1
( ) T T

t b wS S S X I e e X
n

   
 (11) 

where I is identity matrix and e is a column vector and each of its entry takes the value one. If the weight matrix of a 

graph is denoted as M, the normalized graph Laplacian is defined as 
1/2 1/2( )L D D M D   ,where D is a diagonal 

matrix with its entries being the row sums of M, i.e., ii iD d  and i ijj
d M is the degree of vertex xi. Then the 

scatter matrix can be rewritten as TS XLX . So, in this normalized graph Laplacian view, the scatter matrices tS , wS  

and bS   can be redefined by the corresponding weight matrices tM , wM  and bM , Laplacian matrices tL , wL  and bL . 

The tM is defined as ( ) 1t ijM   for all the samples. ( ) 1w ijM   if xi and xj belong to the same class; 0, otherwise. 

( ) 1b ijM   if xi and xj belong to the different classes; 0, otherwise. Since the graph Laplacian of the between-class 

scatter matrix is 

 

1/2 1/2 1/2 1/2

1/2 1/2( )

b t t t w w w

b b w b

L D A D D A D

D D A D

   

 

 

 
 (12) 

where the definition of Dw, Db and Dt are similar with D, they are corresponding to the diagonal degree matrices. In 

summary, the objective function of MMC in Eq. (9) can be written as 

 

( ( - ) )

( ( - 2 ) )

( ( 2 ) )

T

b w

T

t w
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
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 (13) 

To avoid degenerate solutions, we add the constraint to the Eq. (13), and the final form of the objective function 

defined as 

 

( ( 2 ) )
* arg max

( )

T T

t w

T TU

tr U X L L X U
U

tr U XX U




 (14) 

The optimization problem boils down to a generalized eigenvalue problem like in NPE. 

Under the supervised condition, we assume that there exist a transform U, it can satisfy the Eq. (2), (6) and (14) 

simultaneously. So, when projecting the samples, it can makes the samples separated between classes and compacted 

within class; preserves the local and global manifold structure of the sample at the same time. In addition, the sparse 

coefficients in Eq. (10) can preserve the sparse reconstruction relationships between samples and include 

discrimination information of the samples. Based on this assumption, we combine the objective functions of NPE, 

MMC and SPP together and propose the supervised discrimination sparse neighborhood preserving embedding 

(SDSNPE) algorithm, its objective function defined as follows 

 

min   ( )             

min  ( )             

max  ( ( 2 ) )

. .  

T T

T T

T T

t w

T T

tr U XMX U

tr U XS X U

tr U X L L X U

s t U XX U I






 

  (15) 

The essence of the above optimization problem is to find a transformation to project the data into a subspace, in which 

the sparse characteristic and the similarity between samples are maintained. Moreover, the transformation separated the 

samples from different class and made the samples compact in the same class. The above optimization problem can be 

equivalent to the following form 

 

min ( (1 ) ( 2 ) )

                            . .   

T T T T

t w
U

T T

U XM X XS X X L L X U

s t U XX U I

        

  (16) 

where T TM W W W W    , + T TS S S S S    and 0  , 0  , (0,1)    control the amount of sparse 

reconstruction, global structure and local structure. Using the Lagrange multiplication, the optimal basis vector u is 
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given by the maximum eigenvalue solution to the following generalized eigenvalue problem 

 
( (1 ) ( 2 ) )T T T T

t wXM X XS X X L L X u XX u          
 (17) 

The transformation matrix U is composed of the d largest eigenvectors of the Eq. (17), 
1 2[ , ,..., ]dU u u u . In Eq. (16), 

we can also write the objective function as the problem of solving the minimum value, however, when solve the 

generalized eigenvalue problem, seeking the maximum eigenvalue is more stable than seeking the minimum 

eigenvalue. 

IV.  EXPERIMENTAL RESULT 

 

In this section, we carry out experiments on millimeter wave radar HRRP. In order to demonstrate the effectiveness of 

the proposed method, we compare the SDSNPE with NPE, LPP [13], MMC, SNPE and SPP, the classifier we used is k 

nearest neighbor classifier. The experimental environment is set as follows. According to the geometric model of the 

real target, corner reflectors with different positions are utilized as the scattering center models to simulate three 

different kinds of targets and the stepped frequency radar is used to get the HRRP of targets. For each target, we obtain 

a 256 point HRRP with the azimuth from 0° to 179.5°interval 0.5° and the elevation angle constantly is 30°. 

Thus, each target is comprised of 360 HRRP samples and each sample has 256 features. Let all the samples alignment 

with target geometric center and l2 normalization are applied to overcome the time-shift, amplitude sensitivities at first. 

We select 70,75,80,...,120 labeled samples equally interval from each target HRRP dataset as training set respectively, 

and select 120 samples from the rest of each HRRP dataset as testing set randomly. The average recognition rate of 20 

tests is utilized to measure the performance of each algorithm. The recognition rate curves are shown in Figure 1. 

 
Figure 1 The performance comparison of recognition rate 

 

As can be observed from Figure 1, the proposed SDSNPE achieve the best recognition rate under all the number of 

training samples. The advantage of the proposed algorithm is obvious, especially when the training samples less than 

270. When the training samples are 360, the SDSNPE reach the highest, 96.28%, about 0.5% higher than SPP and 0.8% 

higher than MMC, the performance of SPP and MMC are similar after the training samples more than 270. In order to 

test the anti-noise performance of the proposed method, we get the noise clutter from the grass, concrete and soil 

background respectively, and add the clutters into the HRRP samples. The number of training sample is 360 and testing 

sample is 360, the parameters are consistent with the above experiment and the average recognition rate and the stand 

deviations are shown in Table 1. 

From the data in Table 1, in the clutter background, the recognition rate of SDSNPE, 81.88%, is still the highest; the 

worst is NPE, about 75.92%. Under the grass background, the performances of all methods are poor and under the 

concrete background, the performances of all methods are highest. In addition, the performances of SNPE and SPP, 

which based on the sparse coefficient to reconstruct the samples, are higher than the NPE and LPP, which based on the 

k near neighbors to reconstruct the samples. That is to say, the sparse coefficient is more effective than the k near 

neighbor to preserve the structure and reconstruction relationship of the samples. The proposed SDSNPE has the 
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advantage of SPP, MMC and NPE simultaneously, so the average recognition rate is higher than SPP. 

 

Table 1 The recognition accuracy under different background clutters 

Method Grass Concrete Soil Average 

NPE 72.36±10.9 79.17±7.4 76.23±9.8 75.92 

LPP 75.87±6.3 79.96±4.2 77.52±3.1 77.79 

MMC 75.23±4.1 85.79±2.6 82.73±3.1 81.25 

SNPE 73.64±5.3 80.28±4.7 78.59±4.9 77.50 

SPP 72.32±5.6 81.43±4.8 79.88±4.5 77.88 

SDSNPE 80.26±3.3 83.19±2.7 82.20±3.0 81.88 

V. CONCLUSIONS 

In this paper, based on the similarity of three objective functions, we introduce the supervised information into the 

methods and propose a manifold based feature extraction algorithm, called SDSNPE, to extract the features that can 

best preserve the local, global manifold structure of samples and the sparse reconstruction relationship between 

samples. 

The experiments result on three radar target HRRP show that the SDSNPE method not only has a better recognition 

performance than the contrast methods, but also better robustness to clutter noise. 
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