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ABSTRACT: In practice there exist many methods to solve unconstrained, constrained and mixed quadratic and 

geometric programming prob lems. In  this paper an attempt is made to develop constraint Q – G programming problem 

by combin ing constrained quadratic programming problem and constrained geometric programming problem. This 

model is solved by using the technique of quadratic programming problem. A hypothetical example is considered to 

illustrate the model. 
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I INTRODUCTION 

 

In practice various techniques are available to solve constrained quadratic problem. The objective of quadratic 

programming is to maximize or to minimize the quadratic object ive function. Let  decision variables x  and the 

coefficients of objective function, 
nC R and D  be symmetric matrix of real numbers of order n n  then the 

constrained quadratic programming problem is define as fo llows:  

 

' '1
( )

2

0

Maximize f x C x x D x

Subject to the constraints

Qx b

and x

    




 

Here 
'x D x   is in quadratic form and ( )ij n nD d   is a symmetric matrix also 

mb R  and Q  is a real matrix of 

order m n .  

Geometric programming is a technique for solving a special case of nonlinear prob lems. Duffin, Peterson and Zener [2] 

published a book “Geometric Programming: Theory and Applications” that started the field of Geometric 

Programming as a branch of nonlinear optimizat ion with many useful theoretical and computational properties of 

Geometric Programming, to a large extent the scope of linear programming applications and is naturally applied to 

several important nonlinear systems in science and engineering. Several important developments  of Geometric 

Programming are in the area of mechanical and civil engineering, chemical engineering, probability and statistics, 

finance and economics, control theory, circuit design, informat ion technology, coding and signal processing, wireless 

networking, etc. took place in the late 1960s to early 1970s. There are several books on nonlinear optimization that 

have a section on Geometric Programming, e.g., M. Avriel, [5], C. S. Beightler  [1], G. Hadley [4], Taha [6], etc. 

However, many researchers felt that most of the theoretical, algorithmic and application aspects of Geometric 

Programming had been exhausted by the early 1980’s, the period of 1980–98 was relat ively quiet. After the revolution 

in the electronic field, over the last few years, Geometric Programming started to receive renewed attention from the 

operations research community.   
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The constrained Geometric Programming in the following manner:  

 

1 1

( )

1

0

ik

nN
a

k i

k i

Min f x C x

Subject to constraints

Q b
x

x

 



 
 

 



 

    [1] 

Here it  is assumed that the coefficient 0kc   and N is fin ite. The exponents ika  are unrestricted in  sign. ( )liQ q is 

a m n real matrix and ( )ib b  is a 1m is constant. 

Here, a model is considered in which the concept of quadratic programming problem and geometric programming 

problem is combined and hence the new model is defined as Q – G programming problem. 

 

II ASSUMPTIONS 

 

In the present study following assumptions are made to derive a solution to the constrained quadratic -geometric 

programming. 

1. The coefficients are unrestricted in sign i.e. 0 0 ; 1,2,.....i ic or c i n    

2. N is fin ite i.e. number o f terms is fin ite.  

3. The number of terms 1N n   where n  is number o f variables. 

4. ( )ij n nD d  is a symmetric matrix.  

5. The quadratic form of the model is negative semi definite.  

 

III MATHEMATICAL MODEL AND PROCEDURE  

 

Let  
1

x

 
 
 

 and 
nC R and D is any real n n  symmetric matrix then constrained Q - G programming problem is 

defined as under: 

 

 
'

' 1 1 1 1

2

1

0

Minimise Z f x C D
x x x

Subject to the constrints

A b
x

and x

     
         

     

 
 

 


    [2] 

Or,  
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1 1 1

1

1

2

1,2,...,

0. 1,2,....

n n n
iji

i i ji i j

n
li

l

i i

i

dc
Minimise Z

x x x

subject to the constraints

a
b l m

x

and x i n

  



 

 

 

 



 
The above problem can be converted in to constrained quadratic programming problem by taking 

1 1
1,2,....,i

i

y or y i n
x x
    Hence the problem becomes    

 

'

1 2

1 1 1

1

1
( , ,..., )

2

1,2,...,

0. 1,2,....

n n n

n i i ij i j

i i j

n

li i l

i

i

Maximise Z f y y y c y d y y

subject to the constraints

a y b l m

and y i n

  



  

 

 

 



 
Now the above problem can be solved by Wolfe’s method as follow: 

Step 1: Convert the inequalities into equalities by introducing slack variables 
2 , 1, 2,...,ls l m and the slack 

variables 
2 , 1, 2,...,m is i n   in the 

thi  non-negativity constraints 

Step 2: Construct the Lagrangian function, 

 

2 2

1 2

1 1 1

'

1 2

' 2 2 2

1 2

'

1 2

( , , ) ( , ,..., )

( , ,..., ),

( , ,..., ),

( , ,..., )
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n l li i l l m i i m i

l i i

n

m n

n

L y s f y y y a y b s y s

Where

y y y y

s s s s

  

   

 

  



 
          

 







  

 

Step 3: Differentiate 
( , , )L y s 

partially with  respect to the components
y

, 
s

, 


and  equate the first order part ial 

derivatives with equal to zero. Derive the Kuhn-Tucker conditions from the resulting equations as follows: 
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Step 4: Introduce the non-negative artificial variab les , 1,2,...,iw i n   in the above Kuhn-Tucker conditions 

 

1 1

1 2

0 ( 1,2,..., )

....

n m

i ij j l li m i i

j l

n

C d y a w For i n

Z w w w

  

 

     

   

 

 
Step 5: Obtain an in itial basic feasible solution to the linear programming problem 

 

'

1 2

1 1

*

1

* 2

....

0 ( 1,2,..., )

( 1,2,..., )

, , , 0, ( 1,2,..., ), ( 1,2,..., )

, ( 1,2,..., )

n

n m

ij j l li m i i i

j l

n

li i n l l

i

i l m i i

n i l

Maximise Z w w w

Subject to the constraints

d y a w C For i n

a y s b l m

w y l m i n

where s s l m

 

 



 









   

     

  

  

 

 



 
and satisfying the complementary slackness condition: 

 

*

1 1

0
n m

m i i n l l

i l

y s  

 

  
 

Step 6: Use two phase simplex method to obtain an optimum solution satisfying the complementary slackness 

condition to the linear programming problem obtained in step 5.  

Step 7: The optimum solution obtained in step 6 is an optimum solution to the obtained quadratic programming 

problem also. 

Step 8: Using optimum solution of  iy  obtained in step 7 are converted into the optimum solution ix
 by using the 

relation 
1

, 1,2,3,....i

i

x i n
y

   which will min imize the given objective function of Q – G programming problem. 

In this method at each iteration there is a basic solution containing m n  variables. A basic solution at any iteration 

may correspond to one of the following two cases:      

Case 1: For each l  and each i  the basis contains only one complementary variable, such a basic solution is called  a 

standard basic solution and satisfies the complementary slackness constraints. 

Case 2:  For each l  and each i  the basis contains a basic pair of complementary variable, such basic solution is called 

nonstandard basic solution and may not satisfies the complementary slackness constraints. 

The following principal modification is the back-bone of Wolfe’s method: 

“Whenever a nonstandard basis occurs the selection procedure for entering  a new variable into the basis seeks to 

reestablish the complementary slackness condition” 

 

IV.HYPOTHETICAL PROBLEM 

 
Solve the following problem of Q - G Programming  
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2

1 2 1

1 2

1 2

1 2

2 3 2

1 4
4

1 1
2

, 0

Minimise Z
x x x

Subject to the contrants

x x

x x

x x

  

 

 


 

The above problem can be solved as under 

The above Q – G programming problem can be converted into quadratic programming problem by taking 

1
, 1, 2i

i

y i
x

   hence the above problem can be re-written as follows  

 

* 2

1 2 1

1 2

1 2

1 2

2 3 2

4 4

2

, 0

Maximise Z y y y

Subject to the contrants

y y

y y

y y

  

 

 


 

Now, converting inequalities into the equalities by introducing slack variables 
2

1s  and 
2

2s respectively. Considering 

1 0y   and 2 0y  also as inequality constraints and converting those also into the equalities by introducing another 

two slack variables 
2

1s  and 
2

2s then the above problem can be written as 

 

' 2

1 2 1

2

1 2 1

2

1 2 2

2

1 3

2

2 4

2 3 2

4 4

2

0

0

Maximise Z y y y

Subject to the contrants

y y s

y y s

y s

y s

  

  

  

  

  
   

 Construct the Lagrangian function,  

 

1 2 1 2 3 4 1 2 3 4

2 2 2

1 2 1 1 1 2 1 2 1 2 2

2 2

3 1 3 4 2 4

( , , , , , , , , , )

(2 3 2 ) ( 4 4) ( 2)

( ) ( )

L L y y s s s s

y y y y y s y y s

y s y s

   

 

 



          

     
 

Since, 
2

12y  represents negative semi definite quadratic form 
2

1 2 12 3 2Z y y y   is concave in 1y  and 2y . 

Thus maxima of L will be a maxima of 
2

1 2 12 3 2Z y y y    and vice-versa. 

To derive the necessary and sufficient conditions for a maxima value of  L  (and hence of
*Z ), we equate first order 

derivatives of L  with respect to 1 2, , ly y s  and , 1,2,3,4.l l   with zero. Thus we have, 
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1 1 2 3

1

1 2 4

2

2

1 1 1 2 1

1 1

2

2 2 1 2 2

2 2

2

3 3 1 3

3 3

2

4 4 2 4

1 4

2 4 0

3 4 0

2 0, 4 4 0

2 0, 2 0

2 0, 0

2 0, 0

L
y

y

L

y

L L
s y y s

s

L L
s y y s

s

L L
s y s

s

L L
s y s

s

  

  














     




    



 
       

 

 
       

 

 
      

 

 
      

 
 

After simplification, the above equations yields, 

 

1 1 2 3

1 2 4

2

1 2 1

2

1 2 2

2 2

1 1 2 2 3 1 4 2

2 2

1 2 1 2 1 2 3 4

4 2

4 3
.....(1)

4 4

2

0
....(2)

, , , , , , , 0

y

y y s

y y s

s s y y

y y s s

  

  

   

   

   

  

  

  

   


 

A solution , 1,2iy i   to equation (1) satisfying (2) shall necessarily be an optimum one for maximizing.  

To determine the solution to the above simultaneous equations (1), we introduce artificial variables , 1, 2iw i   

(both non negative) in the respective constraints of (1) and construct the dummy objective function 1 2Z w w   

Thus the problem becomes 

 

1 2

1 1 2 3 1

1 2 4 2

*

1 2 1

*

1 2 2

* *

1 2 1 2 1 2 1 2 3 4

4 2

4 3

4 4

2

, , , , , , , , , 0

Maximise g w w

Subject to the contraints

y w

w

y y s

y y s

y y s s w w

  

  

   

 

    

   

  

  


 

 

Satisfying the complementary slackness condition 

 

* *

1 1 2 2 3 1 4 2 0s s y y      
 

Here, we have rep laced 
2

1s  by 
*

1s  and  
2

2s  by 
*

2 .s The optimum solution to the above linear programming 

problem can be solved by using management scientist software, the optimum solution is: 
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* *

1 2 1 2

1 2 3 4

0.313, 0.844, 0, 0,

0.75, 0, 0, 0

y y s s

   

   

   
 

Hence optimum solution to the original p roblem can be obtained as: 

 

1 2 min

1 2

1 1
3.195, 1.185 2.962x x and Z

y y
    
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