

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

Mix Design of Palm Bunch Ash-Cementitious Composite Using Regression Theory

Onwuka Davis Ogbonna, Anyanwu Timothy Uche, Awodiji Chioma Temitope Gloria, Onwuka Silvia Ulari.

Senior Lecturer, Department of Civil Engineering, Federal University of Technology, Owerri, Imo State, Nigeria.

Lecturer II, Department of Civil Engineering, Federal University of Technology, Owerri, Imo State, Nigeria. Onwuka,
Assistant lecturer, Department of Civil Engineering, Federal University of Technology, Owerri, Imo State, Nigeria.

Assistant lecturer, Department of Project Management, Federal University of Technology, Owerri, Imo State, Nigeria.

ABSTRACT: This article presents a model developed from regression theory, for the design of Palm Bunch Ash (PBA)-cement concrete mixtures. PBA-cement concrete is actually a pozzolanic-cementitious composite with five components. The achievement of a desired performance criterion of any pozzolanic-cementitious composite is to a large extent, dependent on adequate proportioning of its components. The conventional mix design method of trial batches is too laborious, time-consuming and expensive for designing mixtures of the five component pozzolanic-cementitious composite i.e. PBA-cement concrete. In this work, a model for designing of PBA-cement concrete mixtures was developed from Osadebe's regression theory. The adequacy of the mix design model was verified using statistical t-test. The model is quite useful and practical for designer's to quickly get relatively accurate information on mix proportions and the corresponding strengths of PBA-cement composite with fixed raw materials, and fixed curing conditions and periods.

KEYWORDS: Mix design, Palm Bunch Ash (PBA), Pozzolana, Composite, Regression Theory.

I. INTRODUCTION

Some agricultural and industrial wastes contain significant portion of pozzolanic materials, and so can be used as SCMs. Palm bunch is an agricultural bye-product, which is gradually finding its way into the construction industry. Its relevance in the construction industry stems from the pozzolanic property of its ash. Already, the ash of other wastes e.g. shells and fibre from oil palm trees, have been used for making cement [13]. Tests conducted on PBA by [4] showed that PBA is a pozzolanic material with a pozzolanic Activity Index (PAI) of 76.9 precent. This value is greater than the minimum value of 70 percent specified by [2] for pozzolanic materials. Extensive research has shown that pozzolanas are known to have produced concrete having almost the same behaviour as normal concrete beyond the ages of 28 days [10]; [11] and [9]. In this work, a model was developed from regression theory by [12], for the mix design of the pozzolanic-cementitious composite, PBA-cement concrete

II MATERIALS

The five materials used in producing the test specimen i.e. PBA-cement concrete cubes, are cement, fine aggregate, coarse aggregates, palm bunch ash and water. Ibeto brand of portland cement was used in producing cubic PBA-cement concrete specimen tested in compression. The cement conforms to requirements of [5]. The physical and chemical properties of the cement were tested and presented in Table 1 and 2 respectively. The PBA used for this investigation was obtained by burning empty palm bunches. Open burning method was used. The ashes were cooled, pulverized (by grinding) and sieved using a 150mm BS sieve. The physical and chemical properties of the PBA are shown in Table 1 and 3 respectively.

The fine aggregate was sharp river sand obtained from Otamiri River in Imo State of Nigeria. In order to eliminate unwanted materials, it was washed and then dried for seven days. The grain size distribution of the sharp river sand shows that the sand is well graded and falls into zone 2 of the grading chart. The coarse aggregate was crushed granite

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

rock (chippings) sourced from Ishiagu quarry site in Ebonyi State of Nigeria. The maximum size of the coarse aggregate is 20mm. Piped municipal water supply conforming to [8] was used for the production of the PBA-cement concrete cubes. Initial and final setting times are given in Table 8. The mix proportions of these constituent materials of concrete are shown in Table 4.

TABLE 1: PHYSICAL PROPERTIES OF IBETO CEMENT AND PALM BUNCH ASH.

Properties	Values				
Moisture content	0.003				
Specific gravity	3.16				
Finess	190 plus				
pН	9.25				
PALM BUN	ICH ASH				
Water Absorption	79.31%				
Bulk density	2334Kg/m ³				
Apparent porosity	91.96%				
Shrinkage	2.63%				
Modulus of plasticity	2.64				
Modulus of rupture	9.40Kg/cm ³				
Specific gravity	2.26				
< 150μm grain size	100%				
< 38µm grain size	5%				

Source: http://OPFA concrete properties.org

TABLE 2: CHEMICAL COMPOSITION OF IBETO CEMENT

S/No	Oxides	Mass Fraction %
1	Alumina (Al ₂ O ₃)	6.04
2	Lime (CaO)	67.53
3	Silicate (SiO ₂)	20.41
4	Magnesium Oxide	1.30
5	Iron Oxide (Fe ₂ O ₃)	2.29
6	Potassium Oxide (K ₂ O)	0.83
7	Sodium oxide (Na ₂ O)	0.25
8	Titanium Oxide	0.20
9	Loss on Ignition	2.62
Total		98.85

Source: Project development institute (PRODA) Emene.

TABLE 3: CHEMICAL COMPOSITION OF PALM BUNCH ASH (PBA)

S/No	Oxide	Percentage Mass (%)
1	Silicate (SiO ₂)	48.65
2	Alumina (Al ₂ O ₃)	2.52
3	Iron oxide (Fe ₂ O ₃)	3.62
4	Lime (CaO)	14.02
5	Magnesium oxide (MgO)	6.13
6	Potassium Oxide (K ₂ O)	17.55
7	Manganese (MnO ₂)	0.37
8	Sulphate (SO ₂)	2.49
9	Titanium Oxide TiO ₂)	0.34
10	Phosphorous (P ₂ O ₅)	3.40
11	Loss on ignition (LOI)	0.13
Total		100%

Source: http://OPFAConcrete properties.org

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

TABLE 4: MIX PROPORTION OF CONSTITUENT MATERIALS USED IN PRODUCING THE CONCRETE BEAMS

Point of observation	Mix No.	Water- cement ratio	Cement	PBA	Sand	Granite chippings
1	Mix-01	0.62	0.95	0.05	2	4
2	Mix-02	0.59	0.90	0.1	2	3
3	Mix-03	0.57	0.85	0.15	1.5	3
4	Mix-04	0.55	0.80	0.20	1.3	2.4
5	Mix-05	0.5	0.75	0.25	1.5	2
12	Mix-06	0.605	0.925	0.075	2	3.5
13	Mix-07	0.595	0.9	0.1	1.75	3.5
14	Mix-08	0.585	0.875	0.125	1.65	3.2
15	Mix-09	0.56	0.85	0.15	1.75	3
23	Mix-10	0.58	0.875	0.125	1.75	3
24	Mix-11	0.570	0.85	0.15	1.65	2.7
25	Mix-12	0.545	0.825	0.175	1.75	2.5
34	Mix-13	0.56	0.825	0.175	/1.4	2.7
35	Mix-14	0.535	0.80	0.20	1.5	2.5
45	Mix-15	0.525	0.775	0.225	1.4	2.2
C1	Mix-16	0.5933	0.9	0.1	1.8333	3.333
C2	Mix-17	0.5867	0.833	0.1167	1.766	3.133
C3	Mix-18	0.5567	0.8	0.1167	1.60	2.80
C4	Mix-19	0.565	0.868	0.15	1.70	2.85
C5	Mix-20	0.58	0.868	0.12	1.80	3.2
C6	Mix-21	0.573	0.875	0.1325	1.75	3.1
C7	Mix-22	0.5825	0.860	0.125	1.70	3.1
C8	Mix-23	0.571	0.875	0.14	1.71	2.98
C9	Mix-24	0.56	0.85	0.15	1.75	3
C10	Mix-25	0.56	0.8375	0.1625	1.575	2.85
C11	Mix-26	0.566	0.85	0.15	1.65	2.88
C12	Mix-27	0.575	0.8725	0.1275	1.80	3.1
C13	Mix-28	0.575	0.865	0.135	1.71	2.98
C14	Mix-29	0.583	0.875	0.125	1.69	3.12
C15	Mix-30	0.576	0.87	0.13	1.73	3.14

III THEORITICAL BACKGROUND

In the course of this work, the regression theory by [12], was used to formulate the response equation for the mix design of PBA-cementitious composite. Osadebe assumed that the following response function, F(Z), is continuous and differentiable with respect to its predictors, Z_i .

$$F(Z) = \sum F^{m}(Z^{(0)}) * (Z_{i} - Z^{(0)}) / m!$$
(1)

Where $0 \le m < \alpha$; m = the degree of polynomial of the response function.

Osadebe assumed that the response function, F(Z) is continuous and differentiable with respect to its predictors, Z_i . By making use of Taylor's series, the response function could be expanded in the neighbourhood of a chosen point:

$$Z^{(0)} = Z_1^{(0)}, Z_2^{(0)}, Z_3^{(0)}, Z_4^{(0)}, Z_5^{(0)}$$
(2)

Expanding Eqn. (1) up to the second order gives:

$$\begin{split} F(Z) &= F_o(Z^{(0)}) \ ^* \ (Z_i - Z^{(0)})^0 \ / \ 0! \ + \ \sum F^1(Z^{(0)}) \ ^* \ (Z_i - Z^{(0)})^1 \ + \sum F^{11}(Z^{(0)}) \ ^* \ (Z_i - Z^{(0)})^2 / 2! + \sum F^{11}(Z^{(0)}) \ ^* \ (Z_i - Z^{(0)}) (Z_j - Z^{(0)}) / 2! \end{split}$$

Where $1 \le i \le 5$

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

For the sake of convenience, $Z^{(0)}$ is chosen as the origin. Let the predictor, Z_i , be called fractional portion and S_i be the actual portion of each mixture component. The total quantity of concrete, S_i , is obtained by summing up the actual portions of each mixture component, S_i , that is:

$$\sum S_i = S \tag{4}$$

$$S_1 + S_2 + S_3 + S_4 / + S_5 = S \tag{5}$$

To obtain a unit quantity of concrete, divide Eqn. (5) by S:

$$S_1/S + S_2/S + S_3/S + S_4/S + S_5/S = S/S$$
 (6)

Let Si/S
$$=z_i$$
 (fractional portion) (7)

Then,
$$z_1 + z_2 + z_3 + z_4 + z_5 = 1$$
 (8)

Experience shows that when $\sum z_i = 1$, the values of the coefficients are so large that the regression becomes too sensitive. Consequently, the use of other predictors to determine the response gives outrageous values. To correct this shortcomings, a system of z that yields $\sum z = 10$, is adopted. Thus Eqn. (8) is multiplied by 10:

$$10z_1 + 10z_2 + 10z_3 + 10z_4 + 10z_5 = 10 (9)$$

$$Let 10z_i = Z_i \tag{10}$$

Therefore;

$$Z_1 + Z_2 + Z_3 + Z_4 + Z_5 = 10 (11)$$

The assumption that $Z^{(0)}$ is taken as the origin implies that:

$$Z_1^{(0)} = Z_2^{(0)} = Z_3^{(0)} = Z_4^{(0)} = Z_5^{(0)} = 0$$
 (12)

Let:

$$b_0 = F(0) \tag{13}$$

$$b_i = \partial F(0) / \partial Z_i \tag{14}$$

$$\mathbf{b}_{ii} = \mathbf{\partial}^2 \mathbf{F}(0) / \mathbf{\partial} \mathbf{Z}_i \mathbf{\partial} \mathbf{Z}_i \tag{15}$$

$$\mathbf{b}_{ii} = \mathbf{\partial}^2 \mathbf{F}(0) / \mathbf{\partial} \mathbf{Z}_i^2 \tag{16}$$

Substituting Eqns. (13) to (16) into Eqn. (3), yields;

$$F(Z) = b_o + \sum b_i Z_i + \sum \sum b_{ij} Z_i Z_i + \sum \sum b_{ij} Z_i^2$$
(17)

Where $1 \le i \le 5$ for $\sum b_i Z_i$

 $1 \leq i \leq 4 \quad \text{and} \quad 1 \leq j \leq 5 \quad \text{ for } \quad \sum b_{ij} Z_i Z_j$

 $1 \le i \le 5 \text{ for } \sum b_{ii} Z_i^2$

Multiplying Eqn. (8) by b_o gives the following expression for b_o;

$$b_0 = b_0 z_1 + b_0 z_2 + b_0 z_3 + b_0 z_4 + b_0 z_5$$
 (18)

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

Similarly, multiplying Eqn. (8) by Z_i yields the following expressions for Z_i:

$$z_{1} = z_{1}^{2} + z_{1}z_{2} + z_{1}z_{3} + z_{1}z_{4} + z_{1}z_{5}$$

$$z_{2} = z_{1}z^{2} + z_{2}^{2} + z_{2}z_{3} + z_{2}z_{4} + z_{2}z_{5}$$

$$z_{3} = z_{1}z_{3} + z_{2}z_{3} + z_{3}^{2} + z_{3}z_{4} + z_{3}z_{5}$$

$$z_{4} = z_{1}z_{4} + z_{2}z_{4} + z_{3}z_{4} + z_{4}^{2} + z_{4}z_{5}$$

$$(21)$$

$$z_5 = z_1 z_5 + z_2 z_5 + z_3 z_5 + z_4 z_5 + z_4 z_5 \tag{23}$$

Rearranging the Eqns. (19) – (23) gives the following expressions for Z_i^2 :

$$z_{1}^{2} = z_{1} - z_{1}z_{2} - z_{1}z_{3} - z_{1}z_{4} - z_{1}z_{5}$$

$$z_{2}^{2} = z_{2} - z_{1}z_{2} - z_{2}z_{3} - z_{2}z_{4} - z_{2}z_{5}$$

$$z_{3}^{2} = z_{3} - z_{1}z_{3} - z_{2}z_{3} - z_{3}z_{4} - z_{3}z_{5}$$

$$z_{4}^{2} = z_{4} - z_{1}z_{4} - z_{2}z_{4} - z_{3}z_{4} - z_{4}z_{5}$$

$$z_{5}^{2} = z_{5} - z_{1}z_{5} - z_{2}z_{5} - z_{3}z_{5} - z_{4}z_{5}$$

$$(26)$$

$$(27)$$

Substituting Eqns. (24) – (28) into Eqn. (16), and factorizing, yields Eqn. (29):

$$Y = (b_{o} + b_{1} + b_{11})z_{1} + (b_{o} + b_{2} + b_{22})z_{2} + (b_{o} + b_{3} + b_{33})z_{3} + (b_{o} + b_{4} + b_{44})z_{4} + (b_{o} + b_{5} + b_{55})z_{5} + (b_{12} - b_{11} - b_{22})z_{1}z_{2} + (b_{13} - b_{11} - b_{33})z_{1}z_{3} + (b_{14} - b_{11} - b_{44})z_{1}z_{4} + (b_{15} - b_{11} - b_{55})z_{1}z_{5} + (b_{23} - b_{22} - b_{33})z_{2}z_{3} + (b_{24} - b_{22} - b_{33})z_{2}z_{4} + (b_{25} - b_{22} - b_{55})z_{2}z_{5} + (b_{34} - b_{33} - b_{44})z_{3}z_{4} + (b_{35} - b_{33} - b_{55})z_{3}z_{5} + (b_{45} - b_{44} - b_{55})z_{4}z_{5}$$

Let,
$$\alpha_i = b_o + b_i + b_{ii}$$
 (30)

and,
$$\alpha_{ij} = b_{ij} + b_{ii} + b_{jj}$$
 (31)

Substituting Eqns. (30) - (31) into Eqn. (29) gives;

$$Y = \alpha_{1}z_{1} + \alpha_{2}z_{2} + \alpha_{3}z_{3} + \alpha_{4}z_{4} + \alpha_{5}z_{5} + \alpha_{12}z_{1}z_{2} + \alpha_{13}z_{1}z_{3} + \alpha_{14}z_{1}z_{4} + \alpha_{15}z_{1}z_{5} + \alpha_{23}z_{2}z_{3} + \alpha_{24}z_{2}z_{4} + \alpha_{25}z_{2}z_{5} + \alpha_{34}z_{3}z_{4} + \alpha_{35}z_{3}z_{5} + \alpha_{45}z_{4}z_{5}$$

$$(32)$$

Presenting it in a compact form, Eqn. (32) becomes:

$$Y = \sum \alpha_i z_i + \sum \alpha_{ij} z_i z_i \tag{33}$$

The Eqns. (32) and (33) are the regression equations when the system of $\Sigma z = 1$ is used. Thus for the system of $\Sigma z = 10$ adopted in this work,

$$Y = \sum \alpha_i Z_i + \sum \alpha_{ij} Z_i Z_j \tag{34}$$

Where $10z_i = Z_i$; and $1 \le i \le j \le 5$

The Eqn. (33) is the response function at any point of observation. α_i and α_{ij} are the coefficients of the regression equation, while Z_i and Z_j are the predictors when the system $\Sigma z = 10$.

Coefficient of the Regression Equation

The different points of observation will have different predictors at constant coefficients. At the nth observation point, the response function, $Y^{(n)}$ will have corresponding predictor, $Z_i^{(n)}$. That is to say;

$$Y^{(n)} = \sum \alpha_{i} Z_{i}^{(n)} + \sum \alpha_{ij} Z_{i}^{(n)} Z^{(n)}$$
(35)

where $1 \le i \le j \le 5$ and n = 1, 2, 3, ..., 15.

Eqn. (35) can be put in matrix form as follows;

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

$$[Y^{(n)}] = [Z^{(n)}][\alpha]$$
 (36)

Expanding Eqn. (36) gives the following matrix;

$$\begin{bmatrix} Y^{(1)} \\ Y^{(2)} \\ Y^{(3)} \\ Y^{(3)} \\ \vdots \\ Y^{(15)} \end{bmatrix} = \begin{bmatrix} Z_1^{(1)} & Z_2^{(1)} & Z_3^{(1)} & \dots & Z_n^{(1)} & \alpha_1 \\ Z_1^{(2)} Z_2^{(2)} Z_3^{(2)} & \dots & Z_n^{(2)} & \alpha_2 \\ Z_1^{(3)} & Z_2^{(3)} Z_3^{(3)} & \dots & Z_n^{(3)} & \alpha_3 \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ Z_1^{(15)} & Z_2^{(15)} Z_3^{(15)} & \dots & Z_n^{(15)} & \alpha_{45} \end{bmatrix}$$

$$(37)$$

Rearranging the above Eqn. (37) gives Eqn. (38)

The Table 5 shows the actual mix proportions, $S_i^{(n)}$ and their corresponding fraction portions, $Z_i^{(n)}$. The values of the fractional portions, $Z_i^{(n)}$, were used to develop the $Z^{(n)}$ matrix and inverse $Z^{(n)}$ matrix given in Tables 6 and 7 respectively. The values of the $Y^{(n)}$ matrix are determined from laboratory compressive strength tests on concrete specimen. With the values of the matrices $Y^{(n)}$ and $Z^{(n)}$ known, the values of the constant coefficients, α_i of Eqn. (32) can be determined.

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

TABLE 5: VALUES OF ACTUAL MIX PROPORTIONS AND THEIR CORRESPONDING FRACTIONAL PORTIONS WHEN $\Sigma Z = 10$

	S1	S2	S3	S4	S5	S	Z1	Z2	Z3	Z4	75
1	0.62	0.95	0.05	2	4	7.62	0.081364829	0.124671916	0.00656168	0.262467192	0.524934383
2	0.59	0.9	0.1	2	3	6.59	0.08952959	0.136570561	0.015174507	0.303490137	0.455235205
3	0.57	0.85	0.15	1.5	3	6.07	0.093904448	0.140032949	0.024711697	0.247116969	0.494233937
4	0.55	0.8	0.2	1.3	2.4	5.25	0.104761905	0.152380952	0.038095238	0.247619048	0.457142857
5	0.5	0.75	0.25	1.5	2	5	0.1	0.15	0.05	0.3	0.4
6	0.605	0.925	0.075	2	3.5	7.105	0.085151302	0.130190007	0.010555947	0.281491907	0.492610837
7	0.595	0.9	0.1	1.75	3.5	6.845	0.086924763	0.131482834	0.014609204	0.255661066	0.511322133
8	0.585	0.875	0.125	1.65	3.2	6.435	0.090909091	0.135975136	0.019425019	0.256410256	0.497280497
9	0.56	0.85	0.15	1.75	3	6.31	0.088748019	0.134706815	0.023771791	0.277337559	0.475435816
10	0.58	0.875	0.125	1.75	3	6.33	0.091627172	0.138230648	0.019747235	0.276461295	0.473933649
11	0.57	0.85	0.15	1.65	2.7	5.92	0.096283784	0.143581081	0.025337838	0.278716216	0.456081081
12	0.545	0.825	0.175	1.75	2.5	5.795	0.094046592	0.142364107	0.030198447	0.301984469	0.431406385
13	0.56	0.825	0.175	1.4	2.7	5.66	0.098939929	0.145759717	0.030918728	0.247349823	0.477031802
14	0.535	0.8	0.2	1.5	2.5	5.535	0.096657633	0.144534779	0.036133695	0.27100271	0.451671183
15	0.525	0.775	0.225	1.4	2.2	5.125	0.102439024	0.151219512	0.043902439	0.273170732	0.429268293
16	0.593333	0.9	0.1	1.833333	3.333333	6.759999	0.087771167	0.133136114	0.014792902	0.271203147	0.493096671
17	0.586667	0.883333	0.116667	1.766667	3.133333	6.486667	0.090441979	0.136176714	0.017985662	0.272353583	0.483042062
18	0.556667	0.833333	0.166667	1.6	2.8	5.956667	0.093452765	0.139899209	0.027979909	0.268606588	0.470061529
19	0.565	0.85	0.15	1.7	2.85	6.115	0.092395748	0.139002453	0.024529845	0.278004906	0.466067048
20	0.58	0.88	0.12	1.8	3.2	6.58	0.088145897	0.133738602	0.018237082	0.273556231	0.486322188
21	0.573	0.8675	0.1325	1.75	3.1	6.423	0.089210649	0.135061498	0.02062899	0.272458353	0.482640511
22	0.5825	0.875	0.125	1.7	3.1	6.3825	0.091265178	0.137093615	0.019584802	0.26635331	0.485703094
23	0.571	0.86	0.14	1.71	2.98	6.261	0.091199489	0.137358249	0.022360645	0.27311931	0.475962306
24	0.5685	0.8575	0.1425	1.71	3.03	6.3085	0.090116509	0.135927717	0.022588571	0.271062852	0.480304351
25	0.56	0.8375	0.1625	1.575	2.85	5.985	0.093567251	0.139933166	0.027151211	0.263157895	0.476190476
26	0.566	0.85	0.15	1.66	2.88	6.106	0.092695709	0.139207337	0.024566001	0.271863741	0.471667213
27	0.575	0.8725	0.1275	1.8	3.1	6.475	0.088803089	0.134749035	0.01969112	0.277992278	0.478764479
28	0.575	0.865	0.135	1.71	2.98	6.265	0.091779729	0.138068635	0.021548284	0.272944932	0.47565842
29	0.583	0.875	0.125	1.69	3.12	6.393	0.091193493	0.13686845	0.019552636	0.264351635	0.488033787
30	0.576	0.87	0.13	1.73	3.14	6.446	0.089357741	0.134967422	0.020167546	0.268383494	0.487123798

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

TABLE 6: VALUES OF MATRIX OF ACTUAL MIX PROPORTIONS AND CONTROL MIX PROPORTIONS WHEN $\Sigma Z = 10$

	Z_1	\mathbb{Z}_2	Z_3	\mathbb{Z}_4	Z_5	$Z_1 Z_2$	$Z_1 Z_3$	$Z_1 Z_4$	$Z_1 Z_5$	$Z_2 Z_3$	$\mathbb{Z}_2 \mathbb{Z}_4$	$Z_2 Z_5$	$Z_3 Z_4$	$Z_3 Z_5$	$Z_4 Z_5$
	0.81364	1.246719	0.065616	2.624671	5.249343	1.014390	0.053388	2.135559	4.271119	0.081805	3.272228	6.544457	0.172222	0.344445	13.77780
1	829	16	798	916	832	918	996	827	653	719	767	533	567	133	533
	0.89529	1.365705	0.151745	3.034901	4.552352	1.222710	0.135856	2.717134	4.075702	0.207239	4.144781	6.217172	0.460531	0.690796	13.81593
2	5903	615	068	366	049	641	738	758	138	092	835	752	315	972	945
	0.93904	1.400329	0.247116	2.471169	4.942339	1.314971	0.232053	2.320538	4.641076	0.346045	3.460451	6.920903	0.610667	1.221335	12.21335
3	4481	489	969	687	374	679	826	256	513	179	786	571	962	924	924
	1.04761	1.523809	0.380952	2.476190	4.571428	1.596371	0.399092	2.594104	4.789115	0.580498	3.773242	6.965986	0.943310	1.741496	11.31972
4	9048	524	381	476	571	882	971	308	646	866	63	395	658	599	789
5	1	1.5	0.5	3	4	1.5	0.5	3	4	0.75	4.5	6	1.5	2	12
	0.85151	1.301900	0.105559	2.814919	4.926108	1.108584	0.089885	2.396940	4.194645	0.137427	3.664743	6.413300	0.297141	0.519997	13.86659
6	3019	07	465	071	374	859	259	236	414	875	337	839	352	365	641
	0.86924	1.314828	0.146092	2.556610	5.113221	1.142911	0.126990	2.222327	4.444655	0.192085	3.361504	6.723008	0.373500	0.747000	13.07251
7	7626	342	038	665	329	415	157	751	502	952	161	322	462	925	618
	0.90909	1.359751	0.194250	2.564102	4.972804	1.236137	0.176591	2.331002	4.520731	0.264131	3.486541	6.761778	0.498077	0.965968	12.75078
8	0909	36	194	564	973	6	086	331	793	966	948	324	421	332	198
	0.88748	1.347068	0.237717	2.773375	4.754358	1.195496	0.210969	2.461315	4.219398	0.320222	3.735925	6.404444	0.659281	1.130196	13.18562
9	019	146	908	594	162	294	934	9	685	222	919	433	045	076	089
	0.91627	1.382306	0.197472	2.764612	4.739336	1.266568	0.180938	2.533136	4.342520	0.272967	3.821542	6.551215	0.545934	0.935887	13.10243
10	1722	477	354	954	493	336	334	672	009	314	393	531	628	933	106
	0.96283	1.435810	0.253378	2.787162	4.560810	1.382452	0.243962	2.683585	4.391321	0.363803	4.001837	6.548461	0.706206	1.155610	12.71171
11	7838	811	378	162	811	977	29	19	22	415	564	468	629	847	932
	0.94046	1.423641	0.301984	3.019844	4.314063	1.338885	0.284006	2.840061	4.057230	0.429917	4.299174	6.141678	0.911946	1.302780	13.02780
12	5919	07	469	694	848	907	101	015	021	493	931	472	197	282	282
	0.98939	1.457597	0.309187	2.473498	4.770318	1.442145	0.305909	2.447277	4.719749	0.450670	3.605364	6.953202	0.764774	1.474921	11.79937
13	9293	173	279	233	021	613	675	404	279	504	033	063	189	65	32
	0.96657	1.445347	0.361336	2.710027	4.516711	1.397038	0.349259	2.619448	4.365746	0.522257	3.916931	6.528219	0.979232	1.632054	12.24041
14	6332	787	947	1	834	963	741	055	759	556	672	453	918	863	147
	1.02439	1.512195	0.439024	2.731707	4.292682	1.549077	0.449732	2.798334	4.397382	0.663890	4.130874	6.491374	1.199286	1.884592	11.72635
15	0244	122	39	317	927	93	302	325	51	541	479	182	139	504	336

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

TABLE 7: VALUES OF INVERSE MATRIX OF ACTUAL MIX PROPORTIONS WHEN $\Sigma Z = 10$

Z_1	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_4	Z_5	$Z_1 Z_2$	$Z_1 Z_3$	$Z_1 Z_4$	$Z_1 Z_5$	$\mathbb{Z}_2 \mathbb{Z}_3$	$\mathbb{Z}_2 \mathbb{Z}_4$	$\mathbb{Z}_2 \mathbb{Z}_5$	$\mathbb{Z}_3 \mathbb{Z}_4$	$Z_3 Z_5$	$\mathbb{Z}_4\mathbb{Z}_5$
116128.8	9650.68889	401200.02 23	153125	6.07127E- 09	- 67308.033 34	- 437304.23 34	276061.5	1.38081E -07	124658.8	- 77880.888 9	-4.23112E- 08	- 498331.55 56	-2.2568E- 07	1.22883E-07
94586.90761	10487.8861 5	279486.98 9	93519.562 51	427.5	- 63606.091 51	- 328915.25 55	193795.173	12900.41 64	109388.09 7	- 63784.448 01	- 4231.3351 5	- 324840.98 4	21506.6299 5	12292.3125
1103.2236	1232.87550 6	1045.9857 73	52.062500 15	577.5	- 2355.7811 67	- 2186.5211 67	552.1230003	1751.908 4	2181.529	545.16622 23	- 1723.8772 83	- 498.33155 61	- 1572.6595 5	385.2291667
418.06368	15.4411022 3	1310.0408 89	245.00000 01	20	- 161.53928	- 1499.3288	662.5476001	191.1172 8	284.93440 01	124.60942 23	35.820826 67	- 1139.0435 56	-326.7864	140.0833333
104.51592/	47.2883755 6	81.877555 59	15.312500 01	5	- 141.34687	-187.4161	82.81845002			23	33	26		17.51041667
-420328.1917	40260.2613 8	- 1350404.4 77	- 485978.93 76	-427.5	262164.78 99	1525254.6 94	- 933639.9931	27234.21 24	- 469117.77 71	284187.36 36	8261.1781 5	1628333.9 53	47241.058 95	-28051.6875
-94586.90761	-3983.32184	361266.29	- 147511.43	-577.5	39375.199 51	373895.11 95	-243486.243	15767.17 56	- 76976.809	49610.126 23	- 3201.4863	463946.67 83	- 29880.5314	18876.22917
		15	75						01		83		5	
-102611.4077	- 8894.07488 1	356658.63 2	-141120	20.0000000 1	60738.769 29	387576.49 48	- 249117.8976	2994.170 72	- 112834.02 24	71775.027 21	-859.69984	451061.24 81	- 5391.9756	3362
-109265.5879	8346.88082 1	389819.04 2	150077.81 25	5.00000000 4	60718.576 88	418125.31 92	- 265101.8585	1544.864 68	- 114276.50 28	71704.934 41	-416.41711	486300.40 81	- 2818.5327	1733.53125
-116128.8	- 18915.3502 2	314737.32 36	98000.000 02	-2000	94231.246 68	387326.60 67	-220849.2	-31852.88	- 154576.91 2	87226.595 57	12537.289 33	353103.50 23	50651.892	-28016.66667
-107581.7203	- 11308.1947 1	- 319066.59 94	- 103337.93 75	-632.5	70431.126 09		- 217315.6128	- 16818.32 064	- 121319.72 5	69609.938 5	5368.6463 97	364849.88 89	28083.206 25	-15794.39583
-100979.7981	- 11943.6925 7	- 289136.25 89	95928.218 77	-525	70108.047 53	345688.99 65	- 202822.3841	- 14811.58 92	- 118675.17 76	68909.010 5	5014.9157 33	334629.63 96	24304.738 5	-13833.22917
-162.58032	972.306905 6	- 14.328572 21	-70.4375	-382.5	834.61961 33	- 124.94406 67	220.8492	573.3518 4	276.0302	- 482.86151 11	1249.2513 3	71.190222 21	- 183.81735	315.1875
-528.3860401	- 797.146902 2	- 542.43880 58	- 10.718750 08	-475	1319.2374 53	1093.2605 84	- 193.2430502	- 1114.850 8	-1246.588	218.06648 89	1253.7289 33	177.97555 58	1021.2075	-175.1041667
-104.51592	-8.68562	-736.898	-137.8125	-5	-60.57723	562.2483	-248.45535	-47.77932	160.2756	- 70.092799 99	-13.43281	640.712	122.5449	-52.53125

IV EXPERIMENTAL WORKS.

The test specimen were concrete cubes that were cast in steel moulds measuring 150x150x150mm. A total of ninety concrete cubes were produced and tested in compression. Three concrete cubes were produced from each mix proportion. The base of each mould was clamped in order to prevent leakage of mortar during concrete casting. Then, a thin layer of engine oil was applied to the inner walls of the mould to ease the removal of concrete cubes. Each mould was filled with concrete in three equal layers as specified by [6] and each layer was given 35 blows with a tamping rod. Then, the concrete cubes were cured in water for 28 days. Thereafter, the concrete cubes were demoulded and tested in compression. The concrete specimen were loaded at a constant rate in the compression testing machine until fracture occurred. The load causing failure was recorded in each case, and then the compressive strength calculated and reported to the nearest 0.5N/mm².

V EXPERIMENTAL RESULTS AND ANALYSIS

The compressive strength results obtained from laboratory test, are given in Table 9.

International Journal of AdvancedResearch in Science, **Engineering and Technology**

Vol. 3, Issue 2, February 2016

TABLE 8: INITIAL AND FINAL SETTING TIMES FOR DIFFERENT PERCENTAGE REPLACEMENT OF CEMENT WITH PBA

S/No	Percentage of Cement Replacement	Initial Time (Minutes)	Final Setting Time (Minutes)		
1	0	47	520		
2	5	52	532		
3	10	60	550		
4	15	72	570		
5	20	85	610		
6	36	96	702		

Point of observation	Mix No.	Replicate	es of compressive (N/mm²)		Mean compressive strength (N/mm²)
		1	2	3	
1	Mix-01	17.11	15.44	14.77	15.77
2	Mix-02	16.44	16.00	17.70	16.74
3	Mix-03	20.20	21.30	21.11	20.88
4	Mix-04	18.22	20.00	19.55	19.26
5	Mix-05	16.66	16.00	17.55	16.74
12	Mix-06	19.11	17.77	18.44	18.44
13	Mix-07	16.22	10.11	12.44	12.92
14	Mix-08	15.22	10.11	12.44	12.59
15	Mix-09	18.93	17.55	16.18	17.55
23	Mix-10	18.22	17.55	17.33	17.70
24	Mix-11	17.11	16.88	17.55	17.18
25	Mix-12	11.55	11.11	12.22	11.63
34	Mix-13	17.77	17.77	15.11	16.83
35	Mix-14	19.34	18.77	20.77	19.63
45	Mix-15	17.34	16.89	16.45	16.89
C1	Mix-16	16.45	17.56	17.11	17.04
C2	Mix-17	16.30	16.17	16.13	16.20
C3	Mix-18	15.76	15.78	15.92	15.82
C4	Mix-19	15.39	16.00	15.47	15.62
C5	Mix-20	16.83	17.33	17.11	17.09
C6	Mix-21	16.90	17.16	17.81	17.29
C7	Mix-22	16.07	15.10	15.30	15.49
C8	Mix-23	15.88	16.07	16.35	16.10
C9	Mix-24	14.98	14.18	15.56	14.91
C10	Mix-25	16.44	16.00	16.22	16.22
C11	Mix-26	16.40	16.51	14.40	15.77
C12	Mix-27	16.88	17.77	19.00	17.88
C13	Mix-28	18.10	15.89	16.00	16.66
C14	Mix-29	15.96	16.00	16.25	16.07
C15	Mix-30	14.33	16.56	16.33	15.74

Determination of the coefficients of the Regression Equation

The value of the mean compressive strengths for Mix-01 to Mix-15 (given in Table 9), were substituted into Eqn. (31) to obtain the following coefficients of the regression equation:

$\alpha_1 = 543359.2553$	$\alpha_2 = 313798.1097$	$\alpha_3 = 5179.4744$
$\alpha_4 = 1912.4872$	$\alpha_5 = -107.94572$	$\alpha_6 = 167665.1147$
$\alpha_7 = 58850.2475$	$\alpha_8 = 48221.0717$	$\alpha_9 = 55061.3301$
$\alpha_{10} = 29709.33107$	$\alpha_{11} = -36630.52621$	$\alpha_{12} = 30868.154$
$\alpha_{13} = -669.52042$	$\alpha_{14} = 45020065$	$\alpha_{15} = -155.56604$

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

Determination of the final Regression Equation

Substituting the above regression coefficients into the Eqn. (32) yields the following regression equation;

$$Y = 543359.2553Z_1 + 313798.1097Z_2 + 5179.4744Z_3 + 1912.4872Z_4 - 107.94572Z_5 + 167665.1147Z_1Z_2 + 58850.2475Z_1Z_3 + 48221.0717Z_1Z_4 - 55061.33Z_1Z_5 - 29709.33102\ Z_2Z_3 - 36630.52621Z_2Z_4 - 30868.154\ Z_2Z_5 - 669.5204\ Z_3Z_4 - 450.20065\ Z_3Z_5 - 155.56604\ Z_4Z_5$$

The Eqn. (39) is the final regression equation needed for the mix design of palm bunch ash-cementitious composite. Specifically, it can be used to determine the mix proportions of the constituents of palm bunch ash-cementitious composite when the compressive strength of the palm bunch ash-cementitious composite is known.

Test of Adequacy

The F-test was used to check the adequacy of the formulated regression equation at 95 percent confidence level. The F-test calculations are as follows:

TABLE 10: F-TEST CALCULATION

Control points	Mix No.	\mathbf{Y}_{e}	Y _m	$\mathbf{Y}_{\mathbf{e}}$ - $\hat{\mathbf{Y}}_{\mathbf{e}}$	Y _m - Ŷ _m	$(\mathbf{Y}_{\mathbf{e}} - \hat{\mathbf{Y}}_{\mathbf{e}})$	$(\mathbf{Y}_{\mathbf{m}} \mathbf{-} \hat{\mathbf{Y}}_{\mathbf{m}})$
C1	Mix-16	17.04	17.6006	0.78	1.5622	0.6084	2.4405
C2	Mix-17	16.20	16.038	0.06	0.0009	0.0036	0.0008
C3	Mix-18	15.82	15.0876	0.44	-0.9508	0.1936	0.9040
C4	Mix-19	15.62	15.0876	0.64	-0.9508	0.4096	0.9040
C5	Mix-20	17.09	15.372	0.83	-0.6604	0.6889	0.441
C6	Mix-21	17.29	17.072	1.03	1.0336	1.0609	1.0683
C7	Mix-22	15.49	16.165	-0.77	0.63661	0.5929	0.40527
C8	Mix-23	16.10	15.757	-0.16	0.2814	0.0256	0.0792
C9	Mix-24	14.91	15.512	-1.35	-0.5264	1.8225	0.2771
C10	Mix-25	16.22	15.962	-0.04	-0.0764	0.0016	0.0058
C11	Mix-26	15.77	15.986	-0.49	-0.0764	0.2401	0.00574
C12	Mix-27	17.88	16.86	1.62	0.8216	2.624	0.6750
C13	Mix-28	16.66	16.213	0.4	0.17461	0.1600	0.0305
C14	Mix-29	16.04	15.621	-0.19	-0.4174	0.0361	0.1743
C15	Mix-30	15.74	16.265	-0.52	0.2266	0.2704	0.0514
Sum		243.9	240.576			8.7382	7.4984
Mean		16.26	16.0384			0.5825	0.5356

The varince of the replicates of the compressive strength test results at any arbitrary point can be calculated from the Eqn.(40) as given by [7];

$$S_e^2 = [\Sigma(Y_e - \hat{Y}_e)^2]/(n-1)$$

= (8.7382)/14 = 0.6242 = S_1^2

$$S_{m}^{2} = \left[\Sigma (Y_{m} - \hat{Y}_{m})^{2} \right] / (n - 1)$$

$$= (7.498) / 14 = 0.5357 = S_{2}^{2}$$
(41)

Therefore the calculated F-value is given by:

$$F_{cal} = S_1^2 / S_2^2$$
= (0.6242) / 0.5357
= 1.1653

From standard statistical table, the value of F = 2.44 and 1/F = 0.4094.

Since the value of F_{cal} (i.e. 1.1653) is greater than the value of 1/F and less than the value of F i.e. the condition $1/F < S_1^2/S_2^2 < F$ (i.e. 0.4094 < 1.1653 < 2.44), is satisfied. Thus, the null hypothesis is accepted. This implies that, there is no significant difference between the experimental results and the results obtained from the formulated regression equation.

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

Comparison of Experimental and Predicted Results

The results from the controlled laboratory tests and those obtained from the formulated regression equation are compared in Table (11). The comparison show that the percentage difference ranges from a minimum of 0.838709677% to a maximum of 5.7046%. Since the maximum percentage difference between the predicted value and the controlled experimental values is negligible, the formulated regression equation can be used for the designing of mixtures of palm bunch ash-cementitious composites.

TABLE 11: COMPARISON OF EXPERIMENTAL AND PREDICTED RESULTS

PTS. OF OBSER-VATION	MIX NOS.	EXPERIMENTAL COMPRESSIVE STRENGTH (MPA)	PREDICTED COMPRESSIVE STRENGTH (MPA)	DIFFERENCE	PERCENTAGE DIFFERENCE
C1	Mix -16	17.04	17.60	-0.56	-3.286384977
C2	Mix -17	16.20	16.04	0.16	0.987654321
C3	Mix -18	15.82	15.09	0.73	4.614412137
C4	Mix -19	15.62	15.09	0.53	3.393085787
C5	Mix -20	15.50	15.37	0.13	0.838709677
C6	Mix -21	17.29	17.07	0.22	1.272411799
C7	Mix -22	15.49	16.17	-0.68	-4.389928986
C8	Mix -23	16.10	15.76	0.34	2.111801242
C9	Mix -24	14.91	15.51	-0.60	-4.024144869
C10	Mix -25	16.22	15.96	0.26	1.602959309
C11	Mix -26	15.77	16.00	-0.23	-1.458465441
C12	Mix -27	17.88	16.86	1.02	5.704697987
C13	Mix -28	16.66	16.21	0.45	2.701080432
C14	Mix -29	16.07	15.62	0.45	2.800248911
C15	Mix -30	15.74	16.27	-0.53	-3.367217281

VI CONCLUSION

Test conducted on PBA-Cementitious composite shows that it has the same behaviour as normal concrete beyond the ages of 28 days. A response function based on the Regression Theory by Osadebe, has been formulated for the mix desi/gn of PBA-Cementitious composite. The formulated regression function was tested for adequacy and found adequate. The use of the regression function will simplify the process and reduce the cost of the mix design of PBA-cement concrete mixtures.

REFERENCES

- [1] Aggarwal, M. I. "Mixture Experiments Design Workshop Lecture Note", University of Delhi, India. Pp.77-78. 2002.
- [2] American Society for Testing and Materials (ASTM) International: Standard Specification for Coal Flyashand Raw Calcined Natural Pozzolans for use in Concrete. ASTM C618
- [3] Anyanwu, T. U. "Mathematical Models for the Optimization of the compressive strength of Palm Bunch Ash-Cement Concrete", An unpublished M.Eng Thesis submitted to the Department of Civil Engineering, Federal University of Technology, Owerri, Imo State, Nigeria. 2012.
- [4] Arimanwa, M. C. "Palm-Bunch Ash Cement Concrete" An unpublished thesis submitted to the post graduate school, Federal University of Technology, Owerri, Imo State. 2006.
- [5] British Standard Institute: Specification for Portland Cement.BS 12 (1996).
- [6] British Standard Institute: Method for making Fresh cubes from fresh concrete.BS 1881 (1983), Part 108.
- [7] Cramer, H, "Mathematical Methods of Statistics", Princeton University Press, USA. 1946.
- [8] European Standard: Mixing water for concrete. Specification for sampling, testing and assessing the suitability of water including water recovered from processes in the concrete industry, as mixing water for concrete. EN 1008: 2002
- [9] Elinwa, A. U. and Mahmood, Y. A., "Ash from Timber waste as Cement Replacement Material", Cement and Concrete Composite. 24, pp. 219-222,2002.
- [10] Okpala, D. C., "Rice Husk Ash (RHA) as Partial Replacement of Cement in Concrete", Proceedings of Annual Conference, Nigeria Society of Engineers. 1987.
- [11] Marina, A., Julian, S., and Janer, "Properties of Concrete Made With Fly Ash", International Journal of Cement and Lightweight Concrete. 10 pp. 109-120, 1988.

International Journal of AdvancedResearch in Science, **Engineering and Technology**

Vol. 3, Issue 2, February 2016

- [12] Osadebe, N. N., "Generalized Mathematical Model for Normal Concrete as a Multivariate Function of the Properties of its Constituents" A paper delivered at the Faculty of Engineering, University of Nigeria Nsukka. 2003.
 [13] Price, W. H., "Pozzolans" – A Review, ACI Journal. Vol. 5, pp. 225 – 232. 1975.
- [14] Tay, J. H., "Ash From Oil-palm Waste as /Concrete Material", Journal of Material in Civil Engineering. 2(2), pp. 84-115. 1990.