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ABSTRACT: The notion of quasiinjectivity relative to a class of finitely generated subsystems namely finitely quasi
injective and quasi finitely injective systems over monoids are introduced and studied which are proper generalizations
of quasi injective systems . Several properties of these kind of generalizations are discussed . Conditions under which
subsystems of finitely quasi injective system inherit this property . Characterizations of finitely quasi injective and
quasi finitely injective systems over monoids are considered . The relationship between the classes of finitely quasi
injective with other classes of injectivity are studied. As a consequence, conditions to versus these classes are shown .
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I- INTRODUCTION AND PRELIMINARIES

Throughout this paper , the basic S-system is a unitary right S-system with zero which is consists of a monoid with
zero , a non-empty set M with a function f: M x S — M such that f(m,s) = ms and the following properties hold : (1)
m 1=m (2) m(st) = (ms)t for all m € M and s;t €S, where 1 is the identity element of S . An element® € My is
called fixed of M if ®@s=0 for all s € S [4]. An S-system M; is centered if it has a fixed element ® necessary unique
such that m0 = ® for all m € Mg, where 0 is the zero element of S and @ is the zero of M [8] . A subsystem N of an S-
system M , is a non-empty subset of M such that xse N for all x € N and s € S[8]. Let g be a function from an S-
system A, into an S-system B, , then g will be called an S-homomaorphism , if forany a € A;and s € S, we have

g(as) =g(a)s [3]. An S-congruence p on a right S-system M is an equivalence relation on M; such that whenever (a,b) €
p , then (as, bs) € p for all s € S [6]. The identity S-congruence on M will be denoted by Iy, such that (a,b) € Iy, if and
onlyifa=b[6].

The authors defined that if for every x €M, there is an S-homomorphism f : Ms—xS such that x = f(x;) for x;EMy ,
then an S-system M; is called principal self-generator [1] . A subset A of an S-system M; is called a set of generating
elements or a generating set of M if every element m € M can be presented as m = as forsomea € A,s€S . Then,
an S-system M is finitely generated if M; = < A > for some A ,|A| <o, where < A > is the subsystem of M
generated by A[7 , p.63] . An S-system N, is called Ms-generated , where M, be an S-system if there exists an S-
epimorphism o : M"— N for some index set I . If I is finite , then N is called finitely M-generated of M [2] . An S-
system B is a retract of an S-system A if and only if there exists a subsystem W of A and epimorphism f: A, —» W
such that Bs= W and f(w) = w for every w € W [7, P.84] . An S-homomorphism f which maps an S-system M into an
S-system N is said to be split if there exists S-homomorphism g which maps N into Mg such that fg=1y [6] .

Let A;, M; be two S-systems . A is called Ms-injective if given an S- monomorphism a : N — Mg where N is a
subsystem of M and every S-homomorphism  : N — A ,can be extended to an S-homomorphism ¢ : Mg —A, [10] .
An S-system A; is injective if and only if it is Ms-injective for all S-systems M; . An S-system A is quasi injective if
and only if it is As-injective . Quasi injective S-systems have been studied by Lopez and Luedeman [8] . It is clear that
every injective system is quasi injective but the converse is not true in general see [8] . An S-system A; is weakly
injective if it is injective relative to all embeddings of right ideals into S [7,p.205] .
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In this work, we find weak form of quasi injectivity called finitely quasi injective and quasi finitely injective systems
over monoids . Also , we give some interesting results on these systems .

I-FINITELY QUASI INJECTIVE SYSTEMS OVER MONOIDS

In [9] , V.S.Ramamurthi define finitely injective module which motivate us to define finitely injective relative to S-
system as follows :

Definition (2.1) : Let Mg and N be two S-systems . My is called finitely Ns-injective (for short F-Ns-injective) if every
homomorphism from a finitely generated subsystem of N to M extends to homomorphism of N into M . An S-system
M; is called finitely quasi injective(for short FQ-injective) if M; is F-M-injective system .

Example and Remarks(2.2) :

(1) Every quasi injective systems is FQ-injective systems , but the converse is not true in general as the following
example shows ; let S be the monoid {1,a,b,0} with ab = a*> = a and ba= b® =b . Now , consider S as a right S-system
over itself , then it is easy to check that S is FQ- injective . But , when we take N={a,0} be a subsystem of S, and f be
ifx =0
ifx = a
endomorphism of S . If not , that is there exists S-homomorphism g: S; — S; such that g(x) = f(x) , for each x € N,
which is the trivial S-homomorphism , since other extension is not S-homomorphism . Then , b = f(a) = g(a) = a which
implies that b = a, and this is a contradiction .

S-homomorphism defined by f(x) = {g } , then this S-homomorphism cannot be extended to S-

(2) Isomorphic system to F-M-injective is F-M-injective for any S-system M . In particular , isomorphic system to FQ-
injective is FQ-injective .

(3) Let Ny and N, be two S-systems such that N;= N, . If My is F-N;-injective , then Mg is F-Ny-injective .
In the following theorem , we give characterizations of FQ- injective S-systems :

Theorem (2.3) : The following statements are equivalent for S-system M; with

T = Ends (M) :

(1) Mg is FQ-injective .

(@) v ) Svg (y) ,wherex,y e M", n € Z" implies thatTy < Tx.

(3) fx€Ms,i=1,2,...,nand a: U,x;S — M is S-homomorphism , then there exists S-homomorphism extends
a .

Proof: Put M"=M¥>"and S, = S, -

S1 S{

(1-2) Let yg () ={ (ss) €S, |xs=xs’,wheres=| - | ands=| - |}and vs (%) =75, (v) suchthatx = (xo, ...,
Sh Sr/1

X),Y=(Y1,...,y) € M" , neZ". Then, a: Ui“zlxiS — M;is defined by a(xs) = ys . It is obvious that o is well-

defined and S-homomorphism . Since My is FQ-injective , so there exists ¢ € T such that o extends a , then y; = a(x;) =
o(Xj),wherei=1,2,...n,soy=0X andthen Ty € Tx .

(2—3) As a is S-homomorphism and f is S-monomorphism , so we have Vs, Bx1), -, Bxy)) € Vs, (a(x1), -, 0(xp))

by (2) , we have Ta(x) € TB(x) , where a(X) = (a(X1), - ,0(Xp)) = a(Xy 5 ... , Xp) and B(X) = BE1), -, BXL)) =
B(X1 , ..., Xp) . Thus there exists ¢ € T such that (a(xq),..,0(X,)) = a(BX1), . ,B(Xy)) , Soa(x) = af(x)
Therefore a = of3 .

(3—1) By definition of FQ-injective system .
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Corollary (2.4) : The following statements are equivalent for a monoid S :

(1) Sis aright F-injective .

@7 (@ Sy (B) ,wherea,BeS" ne Z" implies that Sp < So..

(3) Ifa€ S,i=1,2,...,nand o: U™ a;S — S is S-homomorphism , then there exists S-homomorphism b belong to
S which is extends o .

The following proposition gives a condition under which subsystem of FQ-injective inherit this property .
Before this , we need the following concept :

Recall that a subsystem N of S-system M is fully invariant of My if f(N) € N, for all f € Ends(My) [5] . An S-
system is called duo if each subsystem of it is fully invariant .

Proposition (2.5) : Every fully invariant subsystem ofFQ-injective system is FQ-injective .

Proof: Let M be FQ-injective system and N be a fully invariant subsystem of M; . Let X be any finitely generated
subsystem of N and f be S-homomorphism from X into N . Since M is FQ-injective system , so there exists an S-
endomorphism g of My such that goiyoix = iyof , where ix and iy are the inclusion maps of X into N and N into M;
respectively . As N is fully invariant in M, so g(N) SN . Put gy = h, thenV x € X, we have (hoix)(X) = g(X) =
(goinoix)(X) = (iyof )(x) = f(x) . Therefore N is FQ-injective system .

Recall that an S-system M; is called multiplication if every subsystem of M; is of the form MI for some right
ideal 1 of S. It is clear that every subsystem of multiplication system is fully invariant [5] .

Corollary (2.6) : If M is FQ-injective duo ( multiplication ) S-system , then every subsystem of My is FQ-injective .
Proposition (2.7) : Let M and N, be two S-systems and N’ a subsystem of N; . If M is F-N-injective, then :

(1) Every retract of M is F-N-injective.

(2) My is F-N'-injective system .

Proof :(1) Let M = M;@® M, , and K be finitely generated subsystem of N and f be S-homomorphism of K into M; .
Since My is F-Ng-injective, so (j;of ) where j; is injection of M into My extends to S-homomorphism g of N into Mg
such that goix =jiof. Put g (= m;0) : Ns — My , where 7, be the projection map of M, into M , then gloix = m; 0goix =
m10j10f = Iy, of = f. Thus f extends to S-homomorphism g’ and M; is F-N-injective system.

(2) It is obvious .

The following corollaries is immediately from above proposition :
Corollary (2.8): Retract of FQ-injective system is FQ-injective .

Corollary (2.9) : Let N be any subsystem of S-system M. If N is F-M-injective , then N is finitely injective .

Proposition (2.10) : Let Mg and Ns be two S-systems . Let N, be finitely generated subsystem of My . Then N is F-M-
injective if and only if every monomorphismf : Ng — M; split .

Proof: Assume that N is F-Ms-injective system and f : Ny — M, be monomorphism , then by F-Ms-injective of N,
there exists an S-homomorphism g : Mg — N such that gof = Iy . Since Ne= f(Ns) , so f(Ns) is a retract of My .
Conversely , assume that A is finitely generated subsystem of My . Then , by assumption the monomorphism (inclusion
map ) i of A into Mg split, this means there exists w : My — A such that woip= 1. Now, for S-homomorphism f: A
— Ng, set g (= fow) : My — Ngwhich implies that goip = f owois = fola = f . Thus N is F-M-injective system .
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Corollary (2.11) : Let N; be a finitely generated subsystem of an S-system M . If N, is F-Ms-injective system , then N;
is a retract of M.

Corollary (2.12) : Let Mg be FQ-injective S-system . Then , every finitely generated subsystem of Mg which is
isomorphic to M; is a retract of M; .

Definition (2.13) : An S-system M is called FC, if every finitely generated subsystem of M that is isomorphic to a
retract of Mgis itself a retract ofM; .

Theorem (2.14) : Every FQ-injective system satisfies FC, .

Proof: Let M, be FQ-injective S-system and A be a retract of M with A = B, where B is finitely generated subsystem
of M. Let f be S-isomorphism from B into A, then f is S-monomorphism from B into M . Since A is a retract of Mg,
so by corollary(2.8) A is F-M-injective system . By example and remarks (2.2)(2) , since A = B, so B is F-M-injective
system . Then , by proposition (2.10) f is split and by corollary (2.9) B is a retract of M; and so M satisfies FC, —
condition .

Proposition(2.15) : Let M, be an S-system and {N;};; be a family of S-systems , where 1 is finite index set .
Then ,IT;¢N; is finitely M-injective if and only if for each i € I, N; is finitely M-injective system .

Proof:=) Put Ny = IT;¢[N; , assume that Ny is F-M-injective S-system and A is a finitely generated subsystem of M; .
Let f be an S-homomorphism of A into N;. Since N is F-M-injective , so there exists S-homomorphism g : Mg — N
such that goip = jjof , where j; is the injection map of N; into N andip is the inclusion map of A into M. Now , let m;
be the projection map of N onto N;. Put

h(=m;0g): Ms—N;, then Va € A , (hoip)(a) = (m;0g0i4)(d) = (1r;0jij0f)(a) = f(a) . Thus N; is F-M-injective system .

<) Assume that N; is F-M-injective for each i €1 . Let A be finitely generated subsystem of Ms and f be an S-
homomorphism of A into Ns . Since N; is F-M-injective S-system , so there exists S-homomorphism B; : My — N; such
that Bjoia = m;0f , where i be the inclusion map of A into Mg . Now, define an S-homomorphism f (= jiof;) : Ms — N,
then Poia = jioPijoia = jjorr;of = f. Therefore , Ng is F-M-injective system .

Corollary (2.16) : Let Mg and N; be S-systems , where i € | and | is finite index set . If @;¢N; is F-M-injective for all i
€ |, then N; is F-M-injective .

The following proposition give another characterization of FQ-injective S-system :

Proposition (2.17): If My isFQ-injective S-system and T = End(M;) , then TA = TB for each isomorphic subsystems
A and B of M; .

Proof : By assumption there exists an S-isomorphism a : A — B, let b € B so there exists a € A such that a(a) =b .
Forste S, if as = at and since a is well-defined , so a(as) = a(at) , then bs = bt , which implies that y_(a) < v (b) .
Since M is FQ-injective, then by theorem (2.3) , Tb < Taand hence Tb € TA YbeB.ThusTB < TA. Similarly,
we can prove TA € TB . Therefore TA=TB.

As an immediate consequence of above proposition , we have the following result :

Corollary (2.18):If S is F-injective monoid and A , B are two isomorphic ideal of S, then A=B.

Recall that two S-systems M and N, are mutually finitely injective if Mg is finitely Ns-injective and N is
finitely M-injective .

Theorem (2.19) : If M@ M, is FQ-injective system , then M; and M, are mutually F-injective system .
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Proof : Let M;@®M, be FQ-injective system . Let X be any finitely generated subsystem of M, and f be S-
homomorphism from X into M; . Put a(=jjof):X—M;®M,, where j; is the injection map of M; into M;®M,. By
proposition (2.7)(2) , Mi@®M, is F-Mj-injective , so a extends to S-homomorphism g : M, —» M;®&M, . If m; :
M;®M,— M, is the natural projection , then h(=m;g) : M, — M; is S-homomorphism extending f . Consequently , M;
is F-M,-injective system .

The proof of the following corollary is immediately from above theorem and proposition (2.7) :
Corollary (2.20) : If ©;¢M; is FQ-injective system , then M; is F-Mg-injective for all distinctj , K € I .

Definition (2.21) : An S-system M is called quasi finitely injective (for short QF-injective ) if every S-homomorphism
from a finitely Ms-generated subsystem of M to M extends to an S-endomorphism of M.

Proposition (2.22) : The following statements are equivalent for S-system M; with
T = Ends(My) :

(1) My is QF-injective .

(2) Tu, (o) S Tm, (B) , where o, B € T", n € Z" implies that TS Ta. .

Proof : (1—52) Assume that Tu, (o) S yMn(B) such that a,.p € T", n€Z". Write = (0t , ..., 0y ), P=(PB1s ..., Bn)
then the mapping f : U™, o;M — M; defined by f(ojm) = pim is well-defined and S-homomorphism , for this let o;m =
aukviel ,so(m, k)€ T, (o) € Y, (B) which implies that fBim = Bk and then f(oym) = f(o;k) . Also , for S-
homomorphism ,we have f(a;m) s = Bims = f(o;ms) . Since My is QF-injective , so there exists S-endomorphism g of My
which extends f, then fm = g(oym) = f(a;m) ,V i € | andm € My . Thus B = ga and so TP € Ta. .

(2—1) Assume that f : UinzlaiM — M, be homomorphism . Put o= (o, ... ,a,), B=(fPe, ..., By ,thenitis easy
matter to check that T, (o) S Tu, (B). By(2) , we have B € Ta, so there exists ¢ € T such that B = oa . Since f(a(M))

= B(M) = oa(M) . Thus o extends f .
The following proposition give a condition under which endomorphism of S-system is QF-injective :

Proposition (2.23) : Given an S-system M with T = Endy(Ms) . Let o, B denote elements of T . Assume that Mgx Mg
generates kero for each a € T . Then T is right QF-injective if and only if kera € kerf implies that § € Ta .

Proof : If T is right QF-injective , then the condition holds for any M . Conversely , if B € £(kera) = Ta , so there
exists 6 € T such that B = ca . The proof is complete when we prove kera € kerf . Since MgxM; generates kera , so
there exists S-epimorphism f; : Mgx My — kera such that V(X,y) € kera. , we have a(x) = a(y) , and then there exists
(m, k) € Mgx Mg , where x = fim , y = fik . Now , since ¢ is well-defined , so ca(x) = ca(y) which implies that B(x) =
B(y) and (x,y) € kerp . Thus T is QF-injective by proposition (2.22) .

The following proposition give a condition under which endomorphism of QF-injective system is F-injective :
Proposition (2.24) : Let M, be a right S-system with T = Ends(My) , then :

(1) If T is right F-injective , then M is QF-injective .

(2) If My is QF-injective and MsX Ms generates y,, (o) for any positive integer n and o € T", then T is right F-
injective .

Proof :(1) Lety, (o) S vy, (B), wherea,B € T",neZ", then Yr. (@) S v; (B) . Since T is right F-injective , so by
corollary (2.4) we have TBS Ta . Then , by proposition (2.26) M; is QF-injective system .

(2) Let Vr, (o) S Vr, (B), where o, B € T", n€ Z". Then, for any (x,y) € T, (a) , we have a(x) = a(y) . Since MgX M
generates v, (@), so x =Am , y = Ak ,where (m, k) € MsX M and &€ T, . Then , (Am , AK) € v, (o) S v, (B), S0
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B(im ) = B(Aik) . This means that f(x) = B(y) and (x,y) € vy (B) . Hence T, (o) € v, (B) . Since My is QF-injective
system , so TBS Ta and consequently , T is F-injective by corollary (2.4) .

111 -RELATIONSHIP AMOG FQ-INJECTIVE AND QF-INJECTIVE S-SYSTEMS WITH OTHER CLASSES
OF INJECTIVITY

The following proposition gives a condition under which FQ-injective system is QF-injective system , but before this
we need the following concept :

Definition (3.1) : An S-system M; is called self-generator if it generates all its subsystems .

Proposition (3.2) : If M is finitely generated S-system which is self-generator , then M is FQ-injective system if and
only if M QF-injective .

Proof: Assume that My is FQ-injective system . Let X be finitely Ms-generated subsystem of Ms and f be S-
homomorphism of X into My . Since M; is finitely generated and X is finitely Ms-generated , so there exists S-
epimorphism a : Mg — X , so X is finitely generated . Since M, is FQ-injective system , so f extends to S-
endomorphism g of M such that goix = f, where ixis the inclusion map of X into Mg and then M; is QF-injective
system . Conversely , assume that Assume that My is QF-injective system . Let A be finitely generated subsystem of
M, and f be S-homomorphism of A into M . Since M; is self-generator , so there exists S-epimorphism a:Ms—A ,
and then A is finitely Ms-generated . Since My is QF-injective system , so f extends to S-endomorphism g of M; such
that goia = T, where iais the inclusion map of A into M and then M is FQ-injective system .

The following proposition explain under which condition on finitely E(M;)-injective to be injective :

Proposition (3.3) : Let Mg be a finitely generated S-system . Then M is injective system if and only if My is finitely
E(My)-injective .

Proof: =) It is obvious .

&) Let Mg be finitely E(Mg)-injective and f be S-monomorphism from M; into E(M;). Since M; is finitely E(M;)-
injective , so by proposition(2.10) , there exists an S-homomorphism g:E(Ms)—M;s such that gof = Iy, which implies
that f is split and f(M;) is retract of E(M;) , as f(M;) = My . This implies that M is a retract of E(M;) and since E(M) is
injective , so M is injective .

As a particular case of above proposition , we have the following corollary :
Corollary (3.4) : A monoid S is self-injective if and only if S is finitely S-injective S-system .

The following proposition explain under which condition on FQ- injective to being injective , but before this we need
the following concept :

Definition(3.6) : An S-system Mj is said to be weakly injective if for every finitely generated subsystem N of E(Mjy) ,
we have N € X € E(M;) for some X = M; .

Proposition (3.7) : Let M be a finitely generated system . Then Mj is injective system if and only if My is weakly
injective and FQ-injective .

Proof: =)lt is obvious .

<) Itis enough to prove that My = E(My) . Let x € E(Ms) , so MU xS is finitely generated . As My is weakly injective ,
so there exists subsystem X of E(M;) such that MU xS € X = My . Since M is FQ-injective system , so X is also FQ-
injective by example and remarks (2.2)(2) . By theorem(2.14) X is satisfy FC, and since M is finitely generated
subsystem of X, so My is a retract of X . But Ms is N-large subsystem of E(Ms) , soMs is N-large in X . Therefore M; =
X, and x € Mg . Thus , M = E(M) is injective .
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